大型语言模型及其在现代科学发现中的作用

V. Y. Filimonov
{"title":"大型语言模型及其在现代科学发现中的作用","authors":"V. Y. Filimonov","doi":"10.17726/philit.2024.1.3","DOIUrl":null,"url":null,"abstract":"Today, large language models are very powerful, informational and analytical tools that significantly accelerate most of the existing methods and methodologies for processing informational processes. Scientific information is of particular importance in this capacity, which gradually involves the power of large language models. This interaction of science and qualitative new opportunities for working with information lead us to new, unique scientific discoveries, their great quantitative diversity. There is an acceleration of scientific research, a reduction in the time spent on its implementation – the freed up time can be spent both on solving new scientific problems and on scientific creativity, which, although it may not necessarily lead to a specific solution to a particular scientific problem, but is able to demonstrate the beauty of science in various disciplinary areas. As a result, the interaction of large language models and scientific information is at the same time a research for solutions to scientific problems, scientific problems, and scientific creativity. Solving scientific problems requires the ability to efficiently process big data, which cannot be done without an effective method – one of the significant methods was the Transformer architecture, introduced in 2017 and comprehensively integrated into the GPT‑3 model, which, as of September 2020, was the largest and most advanced language model in the world. Therefore, GPT‑3 can be called the basis of most scientific developments carried out in the context of using large language models. The interaction of science and large language models has become a factor in the emergence of a large number of questions, among which are: «Is the result of data analysis new knowledge?», «What are the prospects for scientific creativity in the era of big computing?». Currently, these issues are extremely important, because they allow us to develop the foundations for effective human‑computer interaction. Therefore, this study analyzes the issues presented.","PeriodicalId":398209,"journal":{"name":"Philosophical Problems of IT & Cyberspace (PhilIT&C)","volume":"18 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language models and their role in modern scientific discoveries\",\"authors\":\"V. Y. Filimonov\",\"doi\":\"10.17726/philit.2024.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, large language models are very powerful, informational and analytical tools that significantly accelerate most of the existing methods and methodologies for processing informational processes. Scientific information is of particular importance in this capacity, which gradually involves the power of large language models. This interaction of science and qualitative new opportunities for working with information lead us to new, unique scientific discoveries, their great quantitative diversity. There is an acceleration of scientific research, a reduction in the time spent on its implementation – the freed up time can be spent both on solving new scientific problems and on scientific creativity, which, although it may not necessarily lead to a specific solution to a particular scientific problem, but is able to demonstrate the beauty of science in various disciplinary areas. As a result, the interaction of large language models and scientific information is at the same time a research for solutions to scientific problems, scientific problems, and scientific creativity. Solving scientific problems requires the ability to efficiently process big data, which cannot be done without an effective method – one of the significant methods was the Transformer architecture, introduced in 2017 and comprehensively integrated into the GPT‑3 model, which, as of September 2020, was the largest and most advanced language model in the world. Therefore, GPT‑3 can be called the basis of most scientific developments carried out in the context of using large language models. The interaction of science and large language models has become a factor in the emergence of a large number of questions, among which are: «Is the result of data analysis new knowledge?», «What are the prospects for scientific creativity in the era of big computing?». Currently, these issues are extremely important, because they allow us to develop the foundations for effective human‑computer interaction. Therefore, this study analyzes the issues presented.\",\"PeriodicalId\":398209,\"journal\":{\"name\":\"Philosophical Problems of IT & Cyberspace (PhilIT&C)\",\"volume\":\"18 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Problems of IT & Cyberspace (PhilIT&C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17726/philit.2024.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Problems of IT & Cyberspace (PhilIT&C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17726/philit.2024.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,大型语言模型是非常强大的信息和分析工具,它大大加快了处理信息过程的大多数现有方法和方法论。在这方面,科学信息尤为重要,它逐渐涉及到大型语言模型的力量。科学与处理信息的定性新机遇之间的这种互动,使我们获得了新的、独特的科学发现及其巨大的定量多样性。科学研究的速度加快了,用于实施研究的时间减少了--腾出的时间既可以用于解决新的科学问题,也可以用于科学创造,虽然不一定能找到特定科学问题的具体解决方案,但却能在各个学科领域展示科学之美。因此,大语言模型与科学信息的互动同时也是对科学问题解决方案、科学问题和科学创造力的研究。解决科学问题需要高效处理大数据的能力,而高效处理大数据离不开有效的方法--其中一个重要方法就是2017年推出的Transformer架构,并全面集成到GPT-3模型中,截至2020年9月,GPT-3是世界上最大、最先进的语言模型。因此,GPT-3 可以说是在使用大型语言模型背景下进行的大多数科学发展的基础。科学与大型语言模型的互动已成为大量问题出现的一个因素,其中包括"数据分析的结果是新知识吗?"、"在大计算时代,科学创造力的前景如何?目前,这些问题极为重要,因为它们使我们能够为有效的人机交互奠定基础。因此,本研究对提出的问题进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large language models and their role in modern scientific discoveries
Today, large language models are very powerful, informational and analytical tools that significantly accelerate most of the existing methods and methodologies for processing informational processes. Scientific information is of particular importance in this capacity, which gradually involves the power of large language models. This interaction of science and qualitative new opportunities for working with information lead us to new, unique scientific discoveries, their great quantitative diversity. There is an acceleration of scientific research, a reduction in the time spent on its implementation – the freed up time can be spent both on solving new scientific problems and on scientific creativity, which, although it may not necessarily lead to a specific solution to a particular scientific problem, but is able to demonstrate the beauty of science in various disciplinary areas. As a result, the interaction of large language models and scientific information is at the same time a research for solutions to scientific problems, scientific problems, and scientific creativity. Solving scientific problems requires the ability to efficiently process big data, which cannot be done without an effective method – one of the significant methods was the Transformer architecture, introduced in 2017 and comprehensively integrated into the GPT‑3 model, which, as of September 2020, was the largest and most advanced language model in the world. Therefore, GPT‑3 can be called the basis of most scientific developments carried out in the context of using large language models. The interaction of science and large language models has become a factor in the emergence of a large number of questions, among which are: «Is the result of data analysis new knowledge?», «What are the prospects for scientific creativity in the era of big computing?». Currently, these issues are extremely important, because they allow us to develop the foundations for effective human‑computer interaction. Therefore, this study analyzes the issues presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
What is scientific knowledge produced by Large Language Models? Large language models and their role in modern scientific discoveries A new way of finding analogues as an opportunity to study language, thinking and build artificial intelligence systems The mapping of social networks and computer technology in the star wars universe in 1977-2023: a historical retrospective Quantitative analysis of olfactory vocabulary based on the example of Russian, English and German languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1