净零情景下脱碳联合循环发电厂负载跟随运行的热力学优化

Silvia Ravelli
{"title":"净零情景下脱碳联合循环发电厂负载跟随运行的热力学优化","authors":"Silvia Ravelli","doi":"10.1115/1.4065920","DOIUrl":null,"url":null,"abstract":"\n Post-combustion capture (PCC) by means of mono-ethanolamine (MEA) and hydrogen co-firing, combined with exhaust gas recirculation (EGR), were applied to a typical 2x1 combined cycle (CC) with the goal of reaching net-zero CO2 emissions. The novelty lies in integrating decarbonization solutions into the daily operation of the CC, when power generation is adjusted according to fluctuations in electricity demand, throughout two representative days in summer and winter. More specifically, off-design thermodynamic modelling was adapted to incorporate a multivariable optimization problem to find the maximum power plant efficiency as a function of the following decision variables: - load of each gas turbine (GT), spanning from minimum turndown to full load; - EGR rate, in a range that depends on the fuel type: [0; 0.4] for 100% natural gas (NG) vs. [0; 0.55] when hydrogen is fed to the combustor; with the constraint of net power output equal to electricity demand, for given environmental conditions. Suggestions were made to mitigate the energy penalty due to decarbonization in the load-following operation mode, taking the integration of MEA CO2 capture into the NG-fired CC as a benchmark. The solution in which EGR combines optimally with hydrogen in the fuel mixture, with the addition of PCC to abate residual CO2 emissions, has proven to be the most efficient way to provide dispatchable clean energy, especially in cold climates","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Optimization of Load-Following Operation in a Decarbonized Combined Cycle Power Plant Under Net-Zero Scenarios\",\"authors\":\"Silvia Ravelli\",\"doi\":\"10.1115/1.4065920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Post-combustion capture (PCC) by means of mono-ethanolamine (MEA) and hydrogen co-firing, combined with exhaust gas recirculation (EGR), were applied to a typical 2x1 combined cycle (CC) with the goal of reaching net-zero CO2 emissions. The novelty lies in integrating decarbonization solutions into the daily operation of the CC, when power generation is adjusted according to fluctuations in electricity demand, throughout two representative days in summer and winter. More specifically, off-design thermodynamic modelling was adapted to incorporate a multivariable optimization problem to find the maximum power plant efficiency as a function of the following decision variables: - load of each gas turbine (GT), spanning from minimum turndown to full load; - EGR rate, in a range that depends on the fuel type: [0; 0.4] for 100% natural gas (NG) vs. [0; 0.55] when hydrogen is fed to the combustor; with the constraint of net power output equal to electricity demand, for given environmental conditions. Suggestions were made to mitigate the energy penalty due to decarbonization in the load-following operation mode, taking the integration of MEA CO2 capture into the NG-fired CC as a benchmark. The solution in which EGR combines optimally with hydrogen in the fuel mixture, with the addition of PCC to abate residual CO2 emissions, has proven to be the most efficient way to provide dispatchable clean energy, especially in cold climates\",\"PeriodicalId\":508252,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过单乙醇胺(MEA)和氢气联合燃烧(PCC),结合废气再循环(EGR),将燃烧后捕集(PCC)应用于典型的 2x1 联合循环(CC),目标是实现二氧化碳净零排放。其新颖之处在于将脱碳解决方案整合到 CC 的日常运行中,在夏季和冬季的两个具有代表性的日子里,根据电力需求的波动调整发电量。更具体地说,设计外热力学建模经过调整,纳入了一个多变量优化问题,以找到发电厂的最高效率,作为以下决策变量的函数: - 每台燃气轮机(GT)的负荷,从最小降压到满负荷; - EGR 率,范围取决于燃料类型:[在给定的环境条件下,净输出功率等于电力需求。以 MEA 二氧化碳捕集技术融入 NG 燃气 CC 为基准,提出了在负载跟随运行模式下减轻脱碳带来的能量损失的建议。事实证明,EGR 与燃料混合物中的氢优化组合的解决方案,加上 PCC 以减少残余 CO2 排放,是提供可调度清洁能源的最有效方式,尤其是在寒冷气候条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic Optimization of Load-Following Operation in a Decarbonized Combined Cycle Power Plant Under Net-Zero Scenarios
Post-combustion capture (PCC) by means of mono-ethanolamine (MEA) and hydrogen co-firing, combined with exhaust gas recirculation (EGR), were applied to a typical 2x1 combined cycle (CC) with the goal of reaching net-zero CO2 emissions. The novelty lies in integrating decarbonization solutions into the daily operation of the CC, when power generation is adjusted according to fluctuations in electricity demand, throughout two representative days in summer and winter. More specifically, off-design thermodynamic modelling was adapted to incorporate a multivariable optimization problem to find the maximum power plant efficiency as a function of the following decision variables: - load of each gas turbine (GT), spanning from minimum turndown to full load; - EGR rate, in a range that depends on the fuel type: [0; 0.4] for 100% natural gas (NG) vs. [0; 0.55] when hydrogen is fed to the combustor; with the constraint of net power output equal to electricity demand, for given environmental conditions. Suggestions were made to mitigate the energy penalty due to decarbonization in the load-following operation mode, taking the integration of MEA CO2 capture into the NG-fired CC as a benchmark. The solution in which EGR combines optimally with hydrogen in the fuel mixture, with the addition of PCC to abate residual CO2 emissions, has proven to be the most efficient way to provide dispatchable clean energy, especially in cold climates
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management Development of 1400°C(2552°F) class Ceramic Matrix Composite Turbine Shroud and Demonstration Test with JAXA F7 Aircraft Engine Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry Nox Emissions Assessment of a Multi Jet Burner Operated with Premixed High Hydrogen Natural Gas Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1