{"title":"节流孔型空气阻尼空气弹簧的动态特性分析和关键参数优化","authors":"Junjie Chen, Ziqi Huang, Sheng Kang, Qin Yang, Xianju Yuan, Peng Huang, Yu Feng Gan","doi":"10.1088/1361-6501/ad6177","DOIUrl":null,"url":null,"abstract":"\n The unique hysteretic characteristic of rubber bellows and the nonlinear flow of internal airflow in the system results in the significant nonlinear dynamic characteristic of throttling orifice type air damping air springs. To solve the problem of mathematical representation of dynamic characteristic and key parameters optimization of throttling orifice type air damping air spring, this paper comprehensively considers the hysteretic characteristic of rubber bellows under variable pressure, the nonlinear dynamic characteristic model and linear model of throttling orifice type air damping air spring are established based on the concepts of gas thermodynamics and fluid mechanics. The static and dynamic characteristic tests of the throttling orifice type air damping air spring are conducted, to verify the accuracy and effectiveness of the proposed model, and to reveal the influence laws of excitation amplitude, excitation frequency, and throttling orifice diameter on the quantitative characterization indexes. Finally, a complete throttling orifice diameter optimization method is proposed based on the eight-degree-of-freedom model of the entire vehicle. Optimization results illustrate that the RMS values of the vertical acceleration of the body and the vertical acceleration of the driver are decreased by 19.02% and 38.44%, respectively. Overall, the outcomes of this paper can provide the design idea and theoretical basis for air damping matching and active suspension control.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Characteristic Analysis and Key Parameter Optimization of Throttling Orifice Type Air Damping Air Spring\",\"authors\":\"Junjie Chen, Ziqi Huang, Sheng Kang, Qin Yang, Xianju Yuan, Peng Huang, Yu Feng Gan\",\"doi\":\"10.1088/1361-6501/ad6177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The unique hysteretic characteristic of rubber bellows and the nonlinear flow of internal airflow in the system results in the significant nonlinear dynamic characteristic of throttling orifice type air damping air springs. To solve the problem of mathematical representation of dynamic characteristic and key parameters optimization of throttling orifice type air damping air spring, this paper comprehensively considers the hysteretic characteristic of rubber bellows under variable pressure, the nonlinear dynamic characteristic model and linear model of throttling orifice type air damping air spring are established based on the concepts of gas thermodynamics and fluid mechanics. The static and dynamic characteristic tests of the throttling orifice type air damping air spring are conducted, to verify the accuracy and effectiveness of the proposed model, and to reveal the influence laws of excitation amplitude, excitation frequency, and throttling orifice diameter on the quantitative characterization indexes. Finally, a complete throttling orifice diameter optimization method is proposed based on the eight-degree-of-freedom model of the entire vehicle. Optimization results illustrate that the RMS values of the vertical acceleration of the body and the vertical acceleration of the driver are decreased by 19.02% and 38.44%, respectively. Overall, the outcomes of this paper can provide the design idea and theoretical basis for air damping matching and active suspension control.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad6177\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad6177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic Characteristic Analysis and Key Parameter Optimization of Throttling Orifice Type Air Damping Air Spring
The unique hysteretic characteristic of rubber bellows and the nonlinear flow of internal airflow in the system results in the significant nonlinear dynamic characteristic of throttling orifice type air damping air springs. To solve the problem of mathematical representation of dynamic characteristic and key parameters optimization of throttling orifice type air damping air spring, this paper comprehensively considers the hysteretic characteristic of rubber bellows under variable pressure, the nonlinear dynamic characteristic model and linear model of throttling orifice type air damping air spring are established based on the concepts of gas thermodynamics and fluid mechanics. The static and dynamic characteristic tests of the throttling orifice type air damping air spring are conducted, to verify the accuracy and effectiveness of the proposed model, and to reveal the influence laws of excitation amplitude, excitation frequency, and throttling orifice diameter on the quantitative characterization indexes. Finally, a complete throttling orifice diameter optimization method is proposed based on the eight-degree-of-freedom model of the entire vehicle. Optimization results illustrate that the RMS values of the vertical acceleration of the body and the vertical acceleration of the driver are decreased by 19.02% and 38.44%, respectively. Overall, the outcomes of this paper can provide the design idea and theoretical basis for air damping matching and active suspension control.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.