{"title":"分数衍生物框架下的光学模型吸收项","authors":"Ibrahim Ghabar, Aliaa Burqan, Gharib Gharib","doi":"10.3390/atoms12070037","DOIUrl":null,"url":null,"abstract":"The complex optical model has been widely used to describe the elastic scattering of the nucleon–nucleus. The imaginary term of the optical potential takes into account the non-elastic scattering processes. This term was taken to be a Woods–Saxon form factor or its derivative to simulate the volume absorption or the absorption localized at the surface of the target, respectively. In this study, a fractional derivative of the Woods–Saxon potential with 0<α<1 was used, where α=0 and α=1 give the volume and the surface absorption form factor, respectively.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Optical Model Absorption Term in the Frame of Fractional Derivatives\",\"authors\":\"Ibrahim Ghabar, Aliaa Burqan, Gharib Gharib\",\"doi\":\"10.3390/atoms12070037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex optical model has been widely used to describe the elastic scattering of the nucleon–nucleus. The imaginary term of the optical potential takes into account the non-elastic scattering processes. This term was taken to be a Woods–Saxon form factor or its derivative to simulate the volume absorption or the absorption localized at the surface of the target, respectively. In this study, a fractional derivative of the Woods–Saxon potential with 0<α<1 was used, where α=0 and α=1 give the volume and the surface absorption form factor, respectively.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms12070037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms12070037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
The Optical Model Absorption Term in the Frame of Fractional Derivatives
The complex optical model has been widely used to describe the elastic scattering of the nucleon–nucleus. The imaginary term of the optical potential takes into account the non-elastic scattering processes. This term was taken to be a Woods–Saxon form factor or its derivative to simulate the volume absorption or the absorption localized at the surface of the target, respectively. In this study, a fractional derivative of the Woods–Saxon potential with 0<α<1 was used, where α=0 and α=1 give the volume and the surface absorption form factor, respectively.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions