{"title":"无线石英谐振器 Pd 表面亚纳米金提高氢气传感器的灵敏度","authors":"A. Nagakubo, Tokiya Matsukura, H. Ogi","doi":"10.35848/1347-4065/ad61a7","DOIUrl":null,"url":null,"abstract":"\n Hydrogen (H2) is an important source of next-generation energy production. The various H2 sensors developed to date cannot easily detect very low concentrations of H2 (<10 ppm) at room temperature within 100 s. In this study, we develop H2 sensors by depositing a 200-nm thick palladium (Pd) film on AT-cut quartz resonators and adding a sub-nm gold (Au) layer on the Pd surface. Moderate Au deposition on the Pd surface improves the sensitivity of the sensor by decreasing the activation energy of atomic-hydrogen migration from the surface to the subsurface. The optimal Au thickness that minimizes the activation energy is 0.5 nm. Finally, we show that the approximate detection limit at room temperature is 5 ppm.","PeriodicalId":505044,"journal":{"name":"Japanese Journal of Applied Physics","volume":"29 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity enhancement of hydrogen-gas sensor by sub-nm Au on Pd surface of a wireless quartz resonator\",\"authors\":\"A. Nagakubo, Tokiya Matsukura, H. Ogi\",\"doi\":\"10.35848/1347-4065/ad61a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydrogen (H2) is an important source of next-generation energy production. The various H2 sensors developed to date cannot easily detect very low concentrations of H2 (<10 ppm) at room temperature within 100 s. In this study, we develop H2 sensors by depositing a 200-nm thick palladium (Pd) film on AT-cut quartz resonators and adding a sub-nm gold (Au) layer on the Pd surface. Moderate Au deposition on the Pd surface improves the sensitivity of the sensor by decreasing the activation energy of atomic-hydrogen migration from the surface to the subsurface. The optimal Au thickness that minimizes the activation energy is 0.5 nm. Finally, we show that the approximate detection limit at room temperature is 5 ppm.\",\"PeriodicalId\":505044,\"journal\":{\"name\":\"Japanese Journal of Applied Physics\",\"volume\":\"29 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35848/1347-4065/ad61a7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad61a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensitivity enhancement of hydrogen-gas sensor by sub-nm Au on Pd surface of a wireless quartz resonator
Hydrogen (H2) is an important source of next-generation energy production. The various H2 sensors developed to date cannot easily detect very low concentrations of H2 (<10 ppm) at room temperature within 100 s. In this study, we develop H2 sensors by depositing a 200-nm thick palladium (Pd) film on AT-cut quartz resonators and adding a sub-nm gold (Au) layer on the Pd surface. Moderate Au deposition on the Pd surface improves the sensitivity of the sensor by decreasing the activation energy of atomic-hydrogen migration from the surface to the subsurface. The optimal Au thickness that minimizes the activation energy is 0.5 nm. Finally, we show that the approximate detection limit at room temperature is 5 ppm.