{"title":"带扁平中心体的环形喷嘴的计算和理论研究比较结果","authors":"A. A. Kirshina, A. Levikhin, A. Y. Kirshin","doi":"10.18287/2541-7533-2024-23-2-28-39","DOIUrl":null,"url":null,"abstract":"One of the ways to improve specific characteristics of the power plant of a launch vehicle for ladeploying payload to the near-Earth space is to provide the possibility of operation of a fixed nozzle in the design mode over the whole active leg of the flight trajectory. The nozzle should be compact, lightweight, well-cooled. For detailed testing of the possibility of introducing a nozzle into the rocket engine chamber it is necessary to be able to quickly assess the true value of the thrust and the specific impulse the chamber with such a nozzle can achieve. This article presents the results of comparison of the thrust and specific impulse, obtained during calculations using engineering methods, numerical modeling for the atmospheric section and high-altitude sections of the trajectory. The results of the calculation are compared with the experimental values of the specific impulse obtained on the rocket engine test-bed under atmospheric operating conditions. These results can be effectively applied both to evaluate new and to improve existing nozzle designs of wide-range rocket engines.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"28 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative results of computational and theoretical study of the annular nozzle with a flat central body\",\"authors\":\"A. A. Kirshina, A. Levikhin, A. Y. Kirshin\",\"doi\":\"10.18287/2541-7533-2024-23-2-28-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the ways to improve specific characteristics of the power plant of a launch vehicle for ladeploying payload to the near-Earth space is to provide the possibility of operation of a fixed nozzle in the design mode over the whole active leg of the flight trajectory. The nozzle should be compact, lightweight, well-cooled. For detailed testing of the possibility of introducing a nozzle into the rocket engine chamber it is necessary to be able to quickly assess the true value of the thrust and the specific impulse the chamber with such a nozzle can achieve. This article presents the results of comparison of the thrust and specific impulse, obtained during calculations using engineering methods, numerical modeling for the atmospheric section and high-altitude sections of the trajectory. The results of the calculation are compared with the experimental values of the specific impulse obtained on the rocket engine test-bed under atmospheric operating conditions. These results can be effectively applied both to evaluate new and to improve existing nozzle designs of wide-range rocket engines.\",\"PeriodicalId\":265584,\"journal\":{\"name\":\"VESTNIK of Samara University. Aerospace and Mechanical Engineering\",\"volume\":\"28 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VESTNIK of Samara University. Aerospace and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2541-7533-2024-23-2-28-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7533-2024-23-2-28-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative results of computational and theoretical study of the annular nozzle with a flat central body
One of the ways to improve specific characteristics of the power plant of a launch vehicle for ladeploying payload to the near-Earth space is to provide the possibility of operation of a fixed nozzle in the design mode over the whole active leg of the flight trajectory. The nozzle should be compact, lightweight, well-cooled. For detailed testing of the possibility of introducing a nozzle into the rocket engine chamber it is necessary to be able to quickly assess the true value of the thrust and the specific impulse the chamber with such a nozzle can achieve. This article presents the results of comparison of the thrust and specific impulse, obtained during calculations using engineering methods, numerical modeling for the atmospheric section and high-altitude sections of the trajectory. The results of the calculation are compared with the experimental values of the specific impulse obtained on the rocket engine test-bed under atmospheric operating conditions. These results can be effectively applied both to evaluate new and to improve existing nozzle designs of wide-range rocket engines.