{"title":"基于 CFD 的分区建模方法,用于水资源回收设施的长期动态模拟","authors":"Asier Romay, Beñat Elduayen, Borja Hernández, Gorka Sánchez, Rosario Arnau, Javier Climent, Eduardo Ayesa","doi":"10.2166/wst.2024.230","DOIUrl":null,"url":null,"abstract":"\n \n This article presents a methodology for compartmental model (CM) creation for long-term simulation of water resource recovery facilities (WRRFs). CMs are often focused on reproducing with a lower computational cost than previously simulated scenarios. In contrast, the methodology presented here can represent variable hydraulic conditions, based on the interpolation of data gathered from a set of computational fluid dynamics simulations that reproduce representative hydraulic scenarios. This is achieved by modelling with bidirectional flows the exchange flows between fixed compartments, which are defined based on the geometry of the reactors. The resultant hydraulic surrogate model can be implemented in commercial water treatment software to solve biochemical kinetics. The methodology was applied to simulate in WEST®-DHI, a WRRF in Vila-Real, Spain. In this contribution, the CM was validated with real plant data. The developed CM provided a quick response simulation with a high level of hydraulic and biochemical detail. This allowed us to observe a spatial distribution of component concentration, which could help with sensor location or plant optimisation. The methodology presented here could also be a useful enabler of digital twins to be implemented in WRRF.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"55 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CFD-based compartmental modelling approach for long-term dynamic simulation of water resource recovery facilities\",\"authors\":\"Asier Romay, Beñat Elduayen, Borja Hernández, Gorka Sánchez, Rosario Arnau, Javier Climent, Eduardo Ayesa\",\"doi\":\"10.2166/wst.2024.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This article presents a methodology for compartmental model (CM) creation for long-term simulation of water resource recovery facilities (WRRFs). CMs are often focused on reproducing with a lower computational cost than previously simulated scenarios. In contrast, the methodology presented here can represent variable hydraulic conditions, based on the interpolation of data gathered from a set of computational fluid dynamics simulations that reproduce representative hydraulic scenarios. This is achieved by modelling with bidirectional flows the exchange flows between fixed compartments, which are defined based on the geometry of the reactors. The resultant hydraulic surrogate model can be implemented in commercial water treatment software to solve biochemical kinetics. The methodology was applied to simulate in WEST®-DHI, a WRRF in Vila-Real, Spain. In this contribution, the CM was validated with real plant data. The developed CM provided a quick response simulation with a high level of hydraulic and biochemical detail. This allowed us to observe a spatial distribution of component concentration, which could help with sensor location or plant optimisation. The methodology presented here could also be a useful enabler of digital twins to be implemented in WRRF.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"55 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种用于水资源回收设施(WRRF)长期模拟的分区模型(CM)创建方法。分区模型通常侧重于以较低的计算成本再现之前模拟过的情景。相比之下,本文介绍的方法可以根据从一组计算流体动力学模拟中收集的数据进行插值,再现具有代表性的水力情况,从而表现出多变的水力条件。具体方法是根据反应器的几何形状,用双向流模拟固定隔间之间的交换流。由此产生的水力替代模型可在商业水处理软件中实施,以解决生化动力学问题。该方法被用于模拟西班牙维拉雷尔的 WEST®-DHI WRRF。在这一贡献中,CM 得到了真实水厂数据的验证。所开发的 CM 提供了快速反应模拟,具有较高的水力和生化细节。这使我们能够观察到成分浓度的空间分布,从而有助于传感器定位或工厂优化。这里介绍的方法也可以成为在 WRRF 中实施数字双胞胎的有用工具。
A CFD-based compartmental modelling approach for long-term dynamic simulation of water resource recovery facilities
This article presents a methodology for compartmental model (CM) creation for long-term simulation of water resource recovery facilities (WRRFs). CMs are often focused on reproducing with a lower computational cost than previously simulated scenarios. In contrast, the methodology presented here can represent variable hydraulic conditions, based on the interpolation of data gathered from a set of computational fluid dynamics simulations that reproduce representative hydraulic scenarios. This is achieved by modelling with bidirectional flows the exchange flows between fixed compartments, which are defined based on the geometry of the reactors. The resultant hydraulic surrogate model can be implemented in commercial water treatment software to solve biochemical kinetics. The methodology was applied to simulate in WEST®-DHI, a WRRF in Vila-Real, Spain. In this contribution, the CM was validated with real plant data. The developed CM provided a quick response simulation with a high level of hydraulic and biochemical detail. This allowed us to observe a spatial distribution of component concentration, which could help with sensor location or plant optimisation. The methodology presented here could also be a useful enabler of digital twins to be implemented in WRRF.