{"title":"利用空间回归模型分析环境指数对卫星遥感地表温度的影响","authors":"Hamed Faroqi","doi":"10.1007/s12518-024-00568-5","DOIUrl":null,"url":null,"abstract":"<div><p>Land Surface Temperature (LST) is a vital satellite remote sensing-driven indicator of earth heat studies. LST can provide information about urban heat emission, urban climate, and human activities in urban areas. In recent years, the calculated LST for a satellite image pixel has been studied as a parameter affected by urban environment factors such as available land cover types in the same pixel. However, in this study, a scenario in which the calculated LST for a pixel is not only affected by the factors in the same pixel but also by the factors in the neighbor pixels is studied. Firstly, required maps for the calculated LST and influential factors (indicators of vegetation, building, and water surfaces) are produced from satellite remote sensing images. Secondly, the relationship between the LST and influential factors is modeled using the Ordinary Least Squares (OLS) model. Thirdly, Moran’s I and Lagrange Multiplier tests are used to analyze the existence of spatial dependency and correlation in residuals of the OLS model. Fourthly, three spatial regression models (Spatially Lagged X (SLX), Spatial Lag (SL), and Spatial Error (SE) models) are used to model the spatial dependency and correlation between the LST and influential factors. Finally, the outcomes of the models are compared and evaluated. Results present related maps for the variables besides maps for spatial residuals in the spatial regression models. The outcomes of the models are investigated by p-values, log-likelihood, and RMSE. To conclude, the spatial regression models fitted the relation between the dependent and independent variables better than the OLS model.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"16 3","pages":"629 - 638"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing effects of environmental indices on satellite remote sensing land surface temperature using spatial regression models\",\"authors\":\"Hamed Faroqi\",\"doi\":\"10.1007/s12518-024-00568-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Land Surface Temperature (LST) is a vital satellite remote sensing-driven indicator of earth heat studies. LST can provide information about urban heat emission, urban climate, and human activities in urban areas. In recent years, the calculated LST for a satellite image pixel has been studied as a parameter affected by urban environment factors such as available land cover types in the same pixel. However, in this study, a scenario in which the calculated LST for a pixel is not only affected by the factors in the same pixel but also by the factors in the neighbor pixels is studied. Firstly, required maps for the calculated LST and influential factors (indicators of vegetation, building, and water surfaces) are produced from satellite remote sensing images. Secondly, the relationship between the LST and influential factors is modeled using the Ordinary Least Squares (OLS) model. Thirdly, Moran’s I and Lagrange Multiplier tests are used to analyze the existence of spatial dependency and correlation in residuals of the OLS model. Fourthly, three spatial regression models (Spatially Lagged X (SLX), Spatial Lag (SL), and Spatial Error (SE) models) are used to model the spatial dependency and correlation between the LST and influential factors. Finally, the outcomes of the models are compared and evaluated. Results present related maps for the variables besides maps for spatial residuals in the spatial regression models. The outcomes of the models are investigated by p-values, log-likelihood, and RMSE. To conclude, the spatial regression models fitted the relation between the dependent and independent variables better than the OLS model.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"16 3\",\"pages\":\"629 - 638\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-024-00568-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00568-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
摘要
地表温度(LST)是地球热量研究中一个重要的卫星遥感驱动指标。LST 可以提供有关城市热量排放、城市气候和城市地区人类活动的信息。近年来,卫星图像像素的 LST 计算参数受城市环境因素(如同一像素中的可用土地覆被类型)的影响而被研究。然而,本研究将研究一种情况,即像素的计算 LST 不仅受同一像素的因素影响,还受邻近像素的因素影响。首先,根据卫星遥感图像制作计算出的 LST 和影响因素(植被、建筑和水面指标)所需的地图。其次,利用普通最小二乘法(OLS)模型对 LST 和影响因素之间的关系进行建模。第三,利用莫兰 I 检验和拉格朗日乘数检验分析 OLS 模型残差中是否存在空间依赖性和相关性。第四,使用三种空间回归模型(空间滞后 X 模型(SLX)、空间滞后模型(SL)和空间误差模型(SE))来模拟 LST 与影响因素之间的空间依赖性和相关性。最后,对模型的结果进行了比较和评估。除了空间回归模型中的空间残差图之外,结果还显示了变量的相关图。通过 p 值、对数似然比和均方误差对模型的结果进行了研究。总之,空间回归模型比 OLS 模型更好地拟合了因变量和自变量之间的关系。
Analyzing effects of environmental indices on satellite remote sensing land surface temperature using spatial regression models
Land Surface Temperature (LST) is a vital satellite remote sensing-driven indicator of earth heat studies. LST can provide information about urban heat emission, urban climate, and human activities in urban areas. In recent years, the calculated LST for a satellite image pixel has been studied as a parameter affected by urban environment factors such as available land cover types in the same pixel. However, in this study, a scenario in which the calculated LST for a pixel is not only affected by the factors in the same pixel but also by the factors in the neighbor pixels is studied. Firstly, required maps for the calculated LST and influential factors (indicators of vegetation, building, and water surfaces) are produced from satellite remote sensing images. Secondly, the relationship between the LST and influential factors is modeled using the Ordinary Least Squares (OLS) model. Thirdly, Moran’s I and Lagrange Multiplier tests are used to analyze the existence of spatial dependency and correlation in residuals of the OLS model. Fourthly, three spatial regression models (Spatially Lagged X (SLX), Spatial Lag (SL), and Spatial Error (SE) models) are used to model the spatial dependency and correlation between the LST and influential factors. Finally, the outcomes of the models are compared and evaluated. Results present related maps for the variables besides maps for spatial residuals in the spatial regression models. The outcomes of the models are investigated by p-values, log-likelihood, and RMSE. To conclude, the spatial regression models fitted the relation between the dependent and independent variables better than the OLS model.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements