数字农业的变革性技术:利用物联网、遥感和人工智能实现智能作物管理

IF 3.3 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Sensor and Actuator Networks Pub Date : 2024-07-08 DOI:10.3390/jsan13040039
Fernando Fuentes-Peñailillo, K. Gutter, Ricardo Vega, Gilda Carrasco Silva
{"title":"数字农业的变革性技术:利用物联网、遥感和人工智能实现智能作物管理","authors":"Fernando Fuentes-Peñailillo, K. Gutter, Ricardo Vega, Gilda Carrasco Silva","doi":"10.3390/jsan13040039","DOIUrl":null,"url":null,"abstract":"This paper explores the potential of smart crop management based on the incorporation of tools like digital agriculture, which considers current technological tools applied in agriculture, such as the Internet of Things (IoT), remote sensing, and artificial intelligence (AI), to improve crop production efficiency and sustainability. This is essential in the context of varying climatic conditions that affect the availability of resources for agriculture. The integration of tools such as IoT and sensor networks can allow farmers to obtain real-time data on their crops, assessing key health factors, such as soil conditions, plant water status, presence of pests, and environmental factors, among others, which can finally result in data-based decision-making to optimize irrigation, fertilization, and pest control. Also, this can be enhanced by incorporating tools such as drones and unmanned aerial vehicles (UAVs), which can increase monitoring capabilities through comprehensive field surveys and high-precision crop growth tracking. On the other hand, big data analytics and AI are crucial in analyzing extensive datasets to uncover patterns and trends and provide valuable insights for improving agricultural practices. This paper highlights the key technological advancements and applications in smart crop management, addressing challenges and barriers to the global adoption of these current and new types of technologies and emphasizing the need for ongoing research and collaboration to achieve sustainable and efficient crop production.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management\",\"authors\":\"Fernando Fuentes-Peñailillo, K. Gutter, Ricardo Vega, Gilda Carrasco Silva\",\"doi\":\"10.3390/jsan13040039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the potential of smart crop management based on the incorporation of tools like digital agriculture, which considers current technological tools applied in agriculture, such as the Internet of Things (IoT), remote sensing, and artificial intelligence (AI), to improve crop production efficiency and sustainability. This is essential in the context of varying climatic conditions that affect the availability of resources for agriculture. The integration of tools such as IoT and sensor networks can allow farmers to obtain real-time data on their crops, assessing key health factors, such as soil conditions, plant water status, presence of pests, and environmental factors, among others, which can finally result in data-based decision-making to optimize irrigation, fertilization, and pest control. Also, this can be enhanced by incorporating tools such as drones and unmanned aerial vehicles (UAVs), which can increase monitoring capabilities through comprehensive field surveys and high-precision crop growth tracking. On the other hand, big data analytics and AI are crucial in analyzing extensive datasets to uncover patterns and trends and provide valuable insights for improving agricultural practices. This paper highlights the key technological advancements and applications in smart crop management, addressing challenges and barriers to the global adoption of these current and new types of technologies and emphasizing the need for ongoing research and collaboration to achieve sustainable and efficient crop production.\",\"PeriodicalId\":37584,\"journal\":{\"name\":\"Journal of Sensor and Actuator Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensor and Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan13040039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan13040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了基于数字农业等工具的智能作物管理的潜力,数字农业考虑了当前应用于农业的技术工具,如物联网(IoT)、遥感和人工智能(AI),以提高作物生产效率和可持续性。在不同气候条件影响农业资源可用性的情况下,这一点至关重要。通过整合物联网和传感器网络等工具,农民可以获得作物的实时数据,评估关键的健康因素,如土壤条件、植物水分状况、害虫的存在以及环境因素等,最终做出基于数据的决策,优化灌溉、施肥和害虫防治。此外,无人机和无人驾驶飞行器(UAVs)等工具的应用也能增强上述功能,通过全面的实地调查和高精度的作物生长跟踪,提高监测能力。另一方面,大数据分析和人工智能在分析大量数据集以发现模式和趋势方面至关重要,可为改进农业实践提供有价值的见解。本文重点介绍了智能作物管理方面的主要技术进步和应用,探讨了全球采用这些现有技术和新型技术所面临的挑战和障碍,并强调需要不断开展研究与合作,以实现可持续的高效作物生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management
This paper explores the potential of smart crop management based on the incorporation of tools like digital agriculture, which considers current technological tools applied in agriculture, such as the Internet of Things (IoT), remote sensing, and artificial intelligence (AI), to improve crop production efficiency and sustainability. This is essential in the context of varying climatic conditions that affect the availability of resources for agriculture. The integration of tools such as IoT and sensor networks can allow farmers to obtain real-time data on their crops, assessing key health factors, such as soil conditions, plant water status, presence of pests, and environmental factors, among others, which can finally result in data-based decision-making to optimize irrigation, fertilization, and pest control. Also, this can be enhanced by incorporating tools such as drones and unmanned aerial vehicles (UAVs), which can increase monitoring capabilities through comprehensive field surveys and high-precision crop growth tracking. On the other hand, big data analytics and AI are crucial in analyzing extensive datasets to uncover patterns and trends and provide valuable insights for improving agricultural practices. This paper highlights the key technological advancements and applications in smart crop management, addressing challenges and barriers to the global adoption of these current and new types of technologies and emphasizing the need for ongoing research and collaboration to achieve sustainable and efficient crop production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sensor and Actuator Networks
Journal of Sensor and Actuator Networks Physics and Astronomy-Instrumentation
CiteScore
7.90
自引率
2.90%
发文量
70
审稿时长
11 weeks
期刊介绍: Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
AI and Computing Horizons: Cloud and Edge in the Modern Era Hybrid Encryption Model for Secured Three-Phase Authentication Protocol in IoT Recent Studies on Smart Textile-Based Wearable Sweat Sensors for Medical Monitoring: A Systematic Review Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management AI-Based Pedestrian Detection and Avoidance at Night Using Multiple Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1