利用卷积神经网络确定分析局部剪切波分裂测量的时间窗口

Yanwei Zhang, Stephen S. Gao
{"title":"利用卷积神经网络确定分析局部剪切波分裂测量的时间窗口","authors":"Yanwei Zhang, Stephen S. Gao","doi":"10.1785/0220230410","DOIUrl":null,"url":null,"abstract":"\n The time window for analyzing local shear-wave splitting (SWS) phases significantly affects the quality of measurements, revealing a noteworthy domain influence. In this study, an approach using convolutional neural network (CNN) is applied to determine the end of time window (e), which has a similar idea of the phase-picking CNNs. The start of time window is 0.5 s before e. Our data set contains 803 human-labeled measurements, recorded from three stations located in Ridgecrest, California. These measurements are foreshocks and aftershocks of an M 7.1 earthquake on 6 July 2019. After 21 times shifting on each measurement, 90% of the data set is applied as the training data set, with the remaining 10% as the testing data set. The performance of CNN with the testing data set is compared with a nonmachine learning method, multiple filter automatic splitting technique (MFAST). The results reveal that the CNN yields more similar results with human-labeled outcomes than MFAST, as evidenced by lower absolute error and standard deviation for e, SWS time, the orientation of fast-wave polarization, and more consistent results on the map. The CNN also performs well when applied to data recorded by a station in Parkfield, California. This study shows the outstanding performance of CNN in picking the time window and the reliable automatic determination of this time window, and it is also a crucial step for future development of automatic ranking methodologies.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Convolutional Neural Network to Determine Time Window for Analyzing Local Shear-Wave Splitting Measurements\",\"authors\":\"Yanwei Zhang, Stephen S. Gao\",\"doi\":\"10.1785/0220230410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The time window for analyzing local shear-wave splitting (SWS) phases significantly affects the quality of measurements, revealing a noteworthy domain influence. In this study, an approach using convolutional neural network (CNN) is applied to determine the end of time window (e), which has a similar idea of the phase-picking CNNs. The start of time window is 0.5 s before e. Our data set contains 803 human-labeled measurements, recorded from three stations located in Ridgecrest, California. These measurements are foreshocks and aftershocks of an M 7.1 earthquake on 6 July 2019. After 21 times shifting on each measurement, 90% of the data set is applied as the training data set, with the remaining 10% as the testing data set. The performance of CNN with the testing data set is compared with a nonmachine learning method, multiple filter automatic splitting technique (MFAST). The results reveal that the CNN yields more similar results with human-labeled outcomes than MFAST, as evidenced by lower absolute error and standard deviation for e, SWS time, the orientation of fast-wave polarization, and more consistent results on the map. The CNN also performs well when applied to data recorded by a station in Parkfield, California. This study shows the outstanding performance of CNN in picking the time window and the reliable automatic determination of this time window, and it is also a crucial step for future development of automatic ranking methodologies.\",\"PeriodicalId\":508466,\"journal\":{\"name\":\"Seismological Research Letters\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析局部剪切波分裂(SWS)相位的时间窗口对测量质量有很大影响,显示出值得注意的领域影响。本研究采用卷积神经网络(CNN)来确定时间窗的结束时间(e),其思路与相位选取 CNN 相似。我们的数据集包含 803 个人工标注的测量值,分别来自加利福尼亚州里奇奎斯特的三个站点。这些测量值是 2019 年 7 月 6 日发生的 M 7.1 级地震的前震和余震。每个测量值经过 21 次移动后,90% 的数据集被用作训练数据集,剩余的 10%作为测试数据集。将 CNN 在测试数据集上的表现与一种非机器学习方法--多重滤波自动分割技术(MFAST)进行了比较。结果表明,与 MFAST 相比,CNN 得到的结果与人类标注的结果更加相似,这体现在 e、SWS 时间、快波极化方向的绝对误差和标准偏差更低,地图上的结果更加一致。CNN 在应用于加利福尼亚州 Parkfield 站记录的数据时也表现出色。这项研究表明,CNN 在挑选时间窗口和可靠地自动确定该时间窗口方面表现出色,这也是未来开发自动排序方法的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Convolutional Neural Network to Determine Time Window for Analyzing Local Shear-Wave Splitting Measurements
The time window for analyzing local shear-wave splitting (SWS) phases significantly affects the quality of measurements, revealing a noteworthy domain influence. In this study, an approach using convolutional neural network (CNN) is applied to determine the end of time window (e), which has a similar idea of the phase-picking CNNs. The start of time window is 0.5 s before e. Our data set contains 803 human-labeled measurements, recorded from three stations located in Ridgecrest, California. These measurements are foreshocks and aftershocks of an M 7.1 earthquake on 6 July 2019. After 21 times shifting on each measurement, 90% of the data set is applied as the training data set, with the remaining 10% as the testing data set. The performance of CNN with the testing data set is compared with a nonmachine learning method, multiple filter automatic splitting technique (MFAST). The results reveal that the CNN yields more similar results with human-labeled outcomes than MFAST, as evidenced by lower absolute error and standard deviation for e, SWS time, the orientation of fast-wave polarization, and more consistent results on the map. The CNN also performs well when applied to data recorded by a station in Parkfield, California. This study shows the outstanding performance of CNN in picking the time window and the reliable automatic determination of this time window, and it is also a crucial step for future development of automatic ranking methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Geodetic-Based Earthquake Early Warning System for Colombia and Ecuador Constraining the Geometry of the Northwest Pacific Slab Using Deep Clustering of Slab Guided Waves An Empirically Constrained Forecasting Strategy for Induced Earthquake Magnitudes Using Extreme Value Theory A Software Tool for Hybrid Earthquake Forecasting in New Zealand DASPy: A Python Toolbox for DAS Seismology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1