用于高熵合金相诊断的随机森林分类器

IF 0.9 Q2 MATHEMATICS Afrika Matematika Pub Date : 2024-07-08 DOI:10.1007/s13370-024-01198-1
Masoud Yousefi, Khosrow Rahmani, Masoud Rajabi, Ali Reyhani, Mehdi Moudi
{"title":"用于高熵合金相诊断的随机森林分类器","authors":"Masoud Yousefi,&nbsp;Khosrow Rahmani,&nbsp;Masoud Rajabi,&nbsp;Ali Reyhani,&nbsp;Mehdi Moudi","doi":"10.1007/s13370-024-01198-1","DOIUrl":null,"url":null,"abstract":"<div><p>The random forest (RF) algorithm is considered as a powerful statistical classifier that is more popular in other fields but is relatively unknown in HEA(s)’s prediction phase. In this research, Random Forest (RF) technique is used to investigate phase selection principles effectively utilizing a large experimental case study on 401 distinct HEAs, comprising 174 <span>\\(SS\\)</span>, 54 <span>\\(IM\\)</span>, and 173 <span>\\(SS+IM\\)</span> phases. The accuracy of the proposed method is almost 10% higher than SVM and KNN for classifying HEA(s). Moreover, the precision of the proposed method is similar to ANN. Experimental results indicate the validity and reliability of the RF-based diagnosis method.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random forest classifier for high entropy alloys phase diagnosis\",\"authors\":\"Masoud Yousefi,&nbsp;Khosrow Rahmani,&nbsp;Masoud Rajabi,&nbsp;Ali Reyhani,&nbsp;Mehdi Moudi\",\"doi\":\"10.1007/s13370-024-01198-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The random forest (RF) algorithm is considered as a powerful statistical classifier that is more popular in other fields but is relatively unknown in HEA(s)’s prediction phase. In this research, Random Forest (RF) technique is used to investigate phase selection principles effectively utilizing a large experimental case study on 401 distinct HEAs, comprising 174 <span>\\\\(SS\\\\)</span>, 54 <span>\\\\(IM\\\\)</span>, and 173 <span>\\\\(SS+IM\\\\)</span> phases. The accuracy of the proposed method is almost 10% higher than SVM and KNN for classifying HEA(s). Moreover, the precision of the proposed method is similar to ANN. Experimental results indicate the validity and reliability of the RF-based diagnosis method.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01198-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01198-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

随机森林(RF)算法被认为是一种强大的统计分类器,在其他领域较为流行,但在HEA的预测阶段却相对陌生。在这项研究中,随机森林(RF)技术被用来有效地研究阶段选择原则,利用了一项大型实验案例研究,研究了401个不同的HEA,包括174个(SS)、54个(IM)和173个(SS+IM)阶段。与 SVM 和 KNN 相比,拟议方法对 HEA 分类的准确率高出近 10%。此外,所提方法的精确度与 ANN 相似。实验结果表明了基于射频的诊断方法的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random forest classifier for high entropy alloys phase diagnosis

The random forest (RF) algorithm is considered as a powerful statistical classifier that is more popular in other fields but is relatively unknown in HEA(s)’s prediction phase. In this research, Random Forest (RF) technique is used to investigate phase selection principles effectively utilizing a large experimental case study on 401 distinct HEAs, comprising 174 \(SS\), 54 \(IM\), and 173 \(SS+IM\) phases. The accuracy of the proposed method is almost 10% higher than SVM and KNN for classifying HEA(s). Moreover, the precision of the proposed method is similar to ANN. Experimental results indicate the validity and reliability of the RF-based diagnosis method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
期刊最新文献
Investigation for pseudo-almost periodic functions: generalizations and applications to differential equations A climate-based metapopulation malaria model with human travel and treatment New improvements of some classical inequalities Certain properties of Bazilevi\(\breve{c}\) type univalent class defined through subordination Characterizations of \(\mathcal{Q}\mathcal{C}\)-hyperideals in semihypergroups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1