Daniel Hermenégildo Castillo López, Adrián Sosa Domínguez, J. J. P. Pérez Bueno, G. T. Córdova, David Meneses Rodríguez, José Santos Cruz, Sandra Andrea Mayén Hernández, Juan Manuel Olivares Ramírez
{"title":"黑色 Ni-P 上的选择性双层膜可增强太阳能吸收并减少腐蚀","authors":"Daniel Hermenégildo Castillo López, Adrián Sosa Domínguez, J. J. P. Pérez Bueno, G. T. Córdova, David Meneses Rodríguez, José Santos Cruz, Sandra Andrea Mayén Hernández, Juan Manuel Olivares Ramírez","doi":"10.1680/jsuin.24.00033","DOIUrl":null,"url":null,"abstract":"This work investigates a double-layer configuration for the black Ni-P layers used in solar adsorption technology, aiming to increase the absorption of a broader range of solar wavelengths. This multilayer configuration has a surface with increased roughness and absorption area. The valleys were porous materials, which were connected to an underlying metallic sub-layer that is susceptible to corrosion. In turn, this corrosion induced changes to the top layer. The Ni-P layer was deposited by the electroless technique using an acid nickel sulfate bath as a source of metal ions and a reducing agent of sodium hypophosphite. Etching initiated an oxidation process on the surface, forming a layer of amorphous black nickel oxide for absorption. The surface features of the black Ni-P double layer consist of an uneven surface that aids sunlight adsorption. Carbon steel (AISI 1018) with different surface finishes was used for depositing Ni-P and black Ni-P, aiming to establish correlations with solar adsorption. The sample with an increased surface roughness obtained a higher absorption percentage than a single layer. The corrosion rate was calculated as 7 mmpy for the black Ni-P layer by applying polarization curves. A 6 µm-thick Ni-P double layer was obtained, achieving 96% absorption within the 300–2,000 nm range.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective double-layer on black Ni-P enhances solar absorption and reduces corrosion\",\"authors\":\"Daniel Hermenégildo Castillo López, Adrián Sosa Domínguez, J. J. P. Pérez Bueno, G. T. Córdova, David Meneses Rodríguez, José Santos Cruz, Sandra Andrea Mayén Hernández, Juan Manuel Olivares Ramírez\",\"doi\":\"10.1680/jsuin.24.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates a double-layer configuration for the black Ni-P layers used in solar adsorption technology, aiming to increase the absorption of a broader range of solar wavelengths. This multilayer configuration has a surface with increased roughness and absorption area. The valleys were porous materials, which were connected to an underlying metallic sub-layer that is susceptible to corrosion. In turn, this corrosion induced changes to the top layer. The Ni-P layer was deposited by the electroless technique using an acid nickel sulfate bath as a source of metal ions and a reducing agent of sodium hypophosphite. Etching initiated an oxidation process on the surface, forming a layer of amorphous black nickel oxide for absorption. The surface features of the black Ni-P double layer consist of an uneven surface that aids sunlight adsorption. Carbon steel (AISI 1018) with different surface finishes was used for depositing Ni-P and black Ni-P, aiming to establish correlations with solar adsorption. The sample with an increased surface roughness obtained a higher absorption percentage than a single layer. The corrosion rate was calculated as 7 mmpy for the black Ni-P layer by applying polarization curves. A 6 µm-thick Ni-P double layer was obtained, achieving 96% absorption within the 300–2,000 nm range.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.24.00033\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00033","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Selective double-layer on black Ni-P enhances solar absorption and reduces corrosion
This work investigates a double-layer configuration for the black Ni-P layers used in solar adsorption technology, aiming to increase the absorption of a broader range of solar wavelengths. This multilayer configuration has a surface with increased roughness and absorption area. The valleys were porous materials, which were connected to an underlying metallic sub-layer that is susceptible to corrosion. In turn, this corrosion induced changes to the top layer. The Ni-P layer was deposited by the electroless technique using an acid nickel sulfate bath as a source of metal ions and a reducing agent of sodium hypophosphite. Etching initiated an oxidation process on the surface, forming a layer of amorphous black nickel oxide for absorption. The surface features of the black Ni-P double layer consist of an uneven surface that aids sunlight adsorption. Carbon steel (AISI 1018) with different surface finishes was used for depositing Ni-P and black Ni-P, aiming to establish correlations with solar adsorption. The sample with an increased surface roughness obtained a higher absorption percentage than a single layer. The corrosion rate was calculated as 7 mmpy for the black Ni-P layer by applying polarization curves. A 6 µm-thick Ni-P double layer was obtained, achieving 96% absorption within the 300–2,000 nm range.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.