基于对比度质量增强和 EfficientNet 的 X 射线图像肺病分类法

Teknika Pub Date : 2024-07-06 DOI:10.34148/teknika.v13i2.881
Asfa Dhevi Azzumzumi, M. Hanafi, W. M. P. Dhuhita
{"title":"基于对比度质量增强和 EfficientNet 的 X 射线图像肺病分类法","authors":"Asfa Dhevi Azzumzumi, M. Hanafi, W. M. P. Dhuhita","doi":"10.34148/teknika.v13i2.881","DOIUrl":null,"url":null,"abstract":"COVID-19 dan penyakit paru-paru telah menjadi faktor utama penyebab kematian manusia di seluruh dunia. Kematian pasien dipengaruhi oleh keterlambatan deteksi dini. Sebagian besar profesional medis menggunakan gambar untuk mengidentifikasi kondisi paru-paru. Namun, para ahli yang dapat me-diagnosis dengan gambar sangat terbatas. Diagnosis gambar mendiagnosa menggunakan penglihatan manusia secara konvensional. Klasifikasi penyakit paru-paru sangat bervariasi. Masalah yang disebutkan di atas menunjukkan bahwa deteksi penyakit paru-paru dengan Artificial Intelligence (AI) yang efektif telah ditetapkan. Namun, sebagian besar hasil penyakit paru-paru salah didiagnosis. Bagi pasien, masalah ini menjadi masalah besar. Bertujuan untuk menangani klasifikasi penyakit paru-paru dengan deteksi kesalahan yang tinggi, kami menggunakan beberapa teknik pre-processing gambar dan menerapkan model pembelajaran mendalam dalam EfficientNet. Model Pre-processing termasuk augmentasi, peningkatan white balance, dan peningkatan kontras. Berdasarkan penelitian sebelumnya, mayoritas proses analisa gambar medis mengalami kualitas gambar yang rendah. Berdasarkan laporan eksperimen, model yang kami usulkan mencapai hasil yang signifikan dalam mengurangi kesalahan deteksi pada klasifikasi penyakit paru-paru. Dimana hasil F1 score-nya 0,97, recallnya 0,98, presisinya 0,96, dan akurasinya 0,97. Kami mempertimbangkan untuk menggunakan model yang kami usulkan dalam klasifikasi multi-class. Kami mengevaluasi model yang kami usulkan menggunakan evaluation metric dan AUC Curve.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klasifikasi Penyakit Paru-Paru Berdasarkan Peningkatan Kualitas Kontras dan EfficientNet Menggunakan Gambar X-Ray\",\"authors\":\"Asfa Dhevi Azzumzumi, M. Hanafi, W. M. P. Dhuhita\",\"doi\":\"10.34148/teknika.v13i2.881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 dan penyakit paru-paru telah menjadi faktor utama penyebab kematian manusia di seluruh dunia. Kematian pasien dipengaruhi oleh keterlambatan deteksi dini. Sebagian besar profesional medis menggunakan gambar untuk mengidentifikasi kondisi paru-paru. Namun, para ahli yang dapat me-diagnosis dengan gambar sangat terbatas. Diagnosis gambar mendiagnosa menggunakan penglihatan manusia secara konvensional. Klasifikasi penyakit paru-paru sangat bervariasi. Masalah yang disebutkan di atas menunjukkan bahwa deteksi penyakit paru-paru dengan Artificial Intelligence (AI) yang efektif telah ditetapkan. Namun, sebagian besar hasil penyakit paru-paru salah didiagnosis. Bagi pasien, masalah ini menjadi masalah besar. Bertujuan untuk menangani klasifikasi penyakit paru-paru dengan deteksi kesalahan yang tinggi, kami menggunakan beberapa teknik pre-processing gambar dan menerapkan model pembelajaran mendalam dalam EfficientNet. Model Pre-processing termasuk augmentasi, peningkatan white balance, dan peningkatan kontras. Berdasarkan penelitian sebelumnya, mayoritas proses analisa gambar medis mengalami kualitas gambar yang rendah. Berdasarkan laporan eksperimen, model yang kami usulkan mencapai hasil yang signifikan dalam mengurangi kesalahan deteksi pada klasifikasi penyakit paru-paru. Dimana hasil F1 score-nya 0,97, recallnya 0,98, presisinya 0,96, dan akurasinya 0,97. Kami mempertimbangkan untuk menggunakan model yang kami usulkan dalam klasifikasi multi-class. Kami mengevaluasi model yang kami usulkan menggunakan evaluation metric dan AUC Curve.\",\"PeriodicalId\":52620,\"journal\":{\"name\":\"Teknika\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34148/teknika.v13i2.881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34148/teknika.v13i2.881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19 和肺部疾病已成为导致全球人类死亡的主要因素。患者死亡率受到早期检测延误的影响。大多数医疗专业人员使用图像来识别肺部疾病。然而,能够利用图像进行诊断的专家却非常有限。图像诊断利用的是传统的人类视觉。肺部疾病的分类差异很大。上述问题表明,利用人工智能(AI)有效检测肺部疾病的方法已经确立。然而,大多数肺病结果都是误诊。对于患者来说,这成为了一个大问题。为了解决高误差检测的肺病分类问题,我们利用了多种图像预处理技术,并在效能网络中应用了深度学习模型。预处理模型包括增强、白平衡增强和对比度增强。根据以往的研究,大多数医学图像分析过程都存在图像质量低的问题。根据实验报告,我们提出的模型在减少肺病分类检测误差方面取得了显著效果。F1 得分为 0.97,召回率为 0.98,精确率为 0.96,准确率为 0.97。我们考虑在多类分类中使用我们提出的模型。我们使用评价指标和 AUC 曲线来评估我们提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Klasifikasi Penyakit Paru-Paru Berdasarkan Peningkatan Kualitas Kontras dan EfficientNet Menggunakan Gambar X-Ray
COVID-19 dan penyakit paru-paru telah menjadi faktor utama penyebab kematian manusia di seluruh dunia. Kematian pasien dipengaruhi oleh keterlambatan deteksi dini. Sebagian besar profesional medis menggunakan gambar untuk mengidentifikasi kondisi paru-paru. Namun, para ahli yang dapat me-diagnosis dengan gambar sangat terbatas. Diagnosis gambar mendiagnosa menggunakan penglihatan manusia secara konvensional. Klasifikasi penyakit paru-paru sangat bervariasi. Masalah yang disebutkan di atas menunjukkan bahwa deteksi penyakit paru-paru dengan Artificial Intelligence (AI) yang efektif telah ditetapkan. Namun, sebagian besar hasil penyakit paru-paru salah didiagnosis. Bagi pasien, masalah ini menjadi masalah besar. Bertujuan untuk menangani klasifikasi penyakit paru-paru dengan deteksi kesalahan yang tinggi, kami menggunakan beberapa teknik pre-processing gambar dan menerapkan model pembelajaran mendalam dalam EfficientNet. Model Pre-processing termasuk augmentasi, peningkatan white balance, dan peningkatan kontras. Berdasarkan penelitian sebelumnya, mayoritas proses analisa gambar medis mengalami kualitas gambar yang rendah. Berdasarkan laporan eksperimen, model yang kami usulkan mencapai hasil yang signifikan dalam mengurangi kesalahan deteksi pada klasifikasi penyakit paru-paru. Dimana hasil F1 score-nya 0,97, recallnya 0,98, presisinya 0,96, dan akurasinya 0,97. Kami mempertimbangkan untuk menggunakan model yang kami usulkan dalam klasifikasi multi-class. Kami mengevaluasi model yang kami usulkan menggunakan evaluation metric dan AUC Curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
22
审稿时长
6 weeks
期刊最新文献
Classification of Lung Cancer with Convolutional Neural Network Method Using ResNet Architecture Algoritma Machine Learning Dalam Melakukan Prediksi Pemilihan Konfigurasi Kapal Tunda di Pelabuhan Tanjung Priok Exploration of Software as a Service (SaaS) as a Project Management Tools Innovative Approach of 2D Platformer Mobile Game Development “Super Journey” Klasifikasi Penyakit Paru-Paru Berdasarkan Peningkatan Kualitas Kontras dan EfficientNet Menggunakan Gambar X-Ray
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1