首页 > 最新文献

Teknika最新文献

英文 中文
Algoritma Machine Learning Dalam Melakukan Prediksi Pemilihan Konfigurasi Kapal Tunda di Pelabuhan Tanjung Priok 用于预测丹戎不碌港拖船配置选择的机器学习算法
Pub Date : 2024-07-09 DOI: 10.34148/teknika.v13i2.862
B. Yulianto, R. M. Atok
Pengoperasian pelabuhan secara dasar meliputi berbagai kegiatan pelayanan, salah satu proses pelayanan kegiatan di pelabuhan yaitu pelayanan pemanduan dan penundaan kapal. Salah satu langkah yang dibutuhkan dalam proses penetapan kapal tunda dalam pelayanan pemanduan dan penundaan kapal yaitu pemilihan konfigurasi Kapal Tunda. Penelitian ini menguji performa klasifikasi Support Vector Machine (SVM) dan Naïve Bayes Classifier (NBC) pada data Laporan Harian Gerakan Kapal (LHGK) di Pelabuhan Tanjung Priok selama periode 2021 untuk proses pemodelan dan evaluasi. Penelitian ini bertujuan untuk membuat modelan prediksi dalam penentuan konfigurasi Kapal Tunda, evaluasi hasil model prediksi untuk memilih konfigurasi kapal tunda di Pelabuhan Tanjung Priok. Dengan menerapkan model klasifikasi NBC dan SVM yang ditingkatkan dengan kernel Linier dan RBF, termasuk juga pemilihan fitur baik untuk SVM dan Naïve Bayes. Hasil uji perbandingan model prediksi antara SVM dan NBC menujukan bahwa klasifikasi SVM memberikan hasil yang paling optimal, yaitu menggunakan kernel linier pada nilai C=10, diperoleh akurasi sebesar 84,7%, recall sebesar 84,7%, F1-score sebesar 88,7%, dan akurasi sebesar 88,7%. Penelitian ini dimasa yang akan datang dapat dimanfaatkan dalam proses pengambilan keputusan dalam menentukan susunan konfigurasi Kapal Tunda oleh petugas pelabuhan.
基本港口作业包括各种服务活动,港口服务流程活动之一是引导和延迟船舶服务。在确定引导和延迟船舶服务的拖船过程中,需要选择拖船配置。本研究测试了支持向量机(SVM)和奈夫贝叶斯分类器(NBC)对 2021 年期间丹戎不碌港的船舶动态日报(LHGK)数据进行分类的性能,以进行建模和评估过程。本研究旨在建立一个用于确定拖船配置的预测模型,并对预测模型的结果进行评估,以选择丹戎不碌港的拖船配置。通过应用线性核和 RBF 核增强的 NBC 和 SVM 分类模型,包括 SVM 和 Naïve Bayes 的特征选择。SVM 和 NBC 的预测模型对比测试结果表明,SVM 分类提供了最佳结果,即使用线性核(C = 10),获得了 84.7% 的准确率、84.7% 的召回率、88.7% 的 F1 分数和 88.7% 的准确率。今后,港口官员在确定拖船配置的决策过程中可以利用这项研究。
{"title":"Algoritma Machine Learning Dalam Melakukan Prediksi Pemilihan Konfigurasi Kapal Tunda di Pelabuhan Tanjung Priok","authors":"B. Yulianto, R. M. Atok","doi":"10.34148/teknika.v13i2.862","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.862","url":null,"abstract":"Pengoperasian pelabuhan secara dasar meliputi berbagai kegiatan pelayanan, salah satu proses pelayanan kegiatan di pelabuhan yaitu pelayanan pemanduan dan penundaan kapal. Salah satu langkah yang dibutuhkan dalam proses penetapan kapal tunda dalam pelayanan pemanduan dan penundaan kapal yaitu pemilihan konfigurasi Kapal Tunda. Penelitian ini menguji performa klasifikasi Support Vector Machine (SVM) dan Naïve Bayes Classifier (NBC) pada data Laporan Harian Gerakan Kapal (LHGK) di Pelabuhan Tanjung Priok selama periode 2021 untuk proses pemodelan dan evaluasi. Penelitian ini bertujuan untuk membuat modelan prediksi dalam penentuan konfigurasi Kapal Tunda, evaluasi hasil model prediksi untuk memilih konfigurasi kapal tunda di Pelabuhan Tanjung Priok. Dengan menerapkan model klasifikasi NBC dan SVM yang ditingkatkan dengan kernel Linier dan RBF, termasuk juga pemilihan fitur baik untuk SVM dan Naïve Bayes. Hasil uji perbandingan model prediksi antara SVM dan NBC menujukan bahwa klasifikasi SVM memberikan hasil yang paling optimal, yaitu menggunakan kernel linier pada nilai C=10, diperoleh akurasi sebesar 84,7%, recall sebesar 84,7%, F1-score sebesar 88,7%, dan akurasi sebesar 88,7%. Penelitian ini dimasa yang akan datang dapat dimanfaatkan dalam proses pengambilan keputusan dalam menentukan susunan konfigurasi Kapal Tunda oleh petugas pelabuhan.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"97 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141664153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of Lung Cancer with Convolutional Neural Network Method Using ResNet Architecture 使用 ResNet 架构的卷积神经网络方法进行肺癌分类
Pub Date : 2024-07-09 DOI: 10.34148/teknika.v13i2.906
Aldrich Deril Christian Zebua, Dedy Yehezkiel Marbun, Felix Thedora, Mawaddah Harahap
Lung cancer has become one of the most frightening specters in the world of health, leading many people to death each year. Therefore, the classification of lung cancer types is very important to determine the appropriate treatment steps. Considering that lung cancer treatment in the early stages is far more effective and efficient, accurate classification is the key to improving survival rates. This research focuses on the classification of three common lung cancer types: Adenocarcinoma, Large Cell Carcinoma, and Squamous Cell Carcinoma. To achieve optimal results, this study utilizes the ResNet architecture, a deep neural network model that has demonstrated its capabilities in various fields. Before being used on the model, the dataset containing lung X-ray images of patients undergoes preprocessing. At this stage, each image is resized to 256x256 pixels to ensure uniformity and compatibility with the model. Furthermore, this research trains various ResNet models, ranging from ResNet50, ResNet101, to ResNet152, which is the model with the most parameters. By comparing the performance of each model, this study finds that all trained ResNet models are capable of producing good accuracy in classifying lung cancer types. Among these models, ResNet152 demonstrates the most superior performance with an accuracy of 89%. This result suggests that the ResNet architecture has great potential to be used as an aid in classifying lung cancer types with a high level of accuracy. This research makes a significant contribution to the effort to improve the diagnosis and treatment of lung cancer, paving the way for a brighter future for lung cancer patients.
肺癌已成为健康领域最可怕的幽灵之一,每年导致许多人死亡。因此,肺癌类型的分类对于确定适当的治疗步骤非常重要。考虑到肺癌早期治疗的效果和效率要高得多,准确的分类是提高生存率的关键。本研究重点关注三种常见肺癌类型的分类:腺癌、大细胞癌和鳞状细胞癌。为了达到最佳效果,本研究采用了 ResNet 架构,这是一种深度神经网络模型,已在多个领域证明了其能力。在模型使用之前,包含患者肺部 X 光图像的数据集需要经过预处理。在此阶段,每张图像都被调整为 256x256 像素,以确保图像的统一性和与模型的兼容性。此外,本研究还训练了各种 ResNet 模型,从 ResNet50、ResNet101 到 ResNet152,其中 ResNet152 是参数最多的模型。通过比较每个模型的性能,本研究发现所有训练过的 ResNet 模型都能在肺癌类型分类中产生良好的准确性。在这些模型中,ResNet152 的准确率高达 89%,表现最为出色。这一结果表明,ResNet 架构在辅助高精度肺癌类型分类方面具有巨大潜力。这项研究为改善肺癌的诊断和治疗做出了重要贡献,为肺癌患者的美好未来铺平了道路。
{"title":"Classification of Lung Cancer with Convolutional Neural Network Method Using ResNet Architecture","authors":"Aldrich Deril Christian Zebua, Dedy Yehezkiel Marbun, Felix Thedora, Mawaddah Harahap","doi":"10.34148/teknika.v13i2.906","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.906","url":null,"abstract":"Lung cancer has become one of the most frightening specters in the world of health, leading many people to death each year. Therefore, the classification of lung cancer types is very important to determine the appropriate treatment steps. Considering that lung cancer treatment in the early stages is far more effective and efficient, accurate classification is the key to improving survival rates. This research focuses on the classification of three common lung cancer types: Adenocarcinoma, Large Cell Carcinoma, and Squamous Cell Carcinoma. To achieve optimal results, this study utilizes the ResNet architecture, a deep neural network model that has demonstrated its capabilities in various fields. Before being used on the model, the dataset containing lung X-ray images of patients undergoes preprocessing. At this stage, each image is resized to 256x256 pixels to ensure uniformity and compatibility with the model. Furthermore, this research trains various ResNet models, ranging from ResNet50, ResNet101, to ResNet152, which is the model with the most parameters. By comparing the performance of each model, this study finds that all trained ResNet models are capable of producing good accuracy in classifying lung cancer types. Among these models, ResNet152 demonstrates the most superior performance with an accuracy of 89%. This result suggests that the ResNet architecture has great potential to be used as an aid in classifying lung cancer types with a high level of accuracy. This research makes a significant contribution to the effort to improve the diagnosis and treatment of lung cancer, paving the way for a brighter future for lung cancer patients.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"99 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141664050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of Software as a Service (SaaS) as a Project Management Tools 将软件即服务(SaaS)作为项目管理工具的探索
Pub Date : 2024-07-09 DOI: 10.34148/teknika.v13i2.933
Liliana, Daniel Soesanto, Bambang Prijambodo, Jasti Ohanna
Companies increasingly adopt software as a Service (SaaS) as a project management tool. SaaS offers greater flexibility, availability, and accessibility than traditional information system software. In this study, SaaS is used as the basis for creating project management applications, including recording work plans, the progress of each user's performance, and meeting documentation. The stages of the literature study are carried out by looking at journals and books. The trial was carried out using black-box testing. Verification trials are carried out by involving a team of programmers to see the flow of the system algorithm. Validation trials are carried out by asking various users involved in project implementation to try the system and asking users to fill out questionnaires related to the ease of use of project management features. The two stages of the trial showed good results, as evidenced by 77.8% of users stating that the SaaS concept really helped them with the flexibility of system installation with a short waiting time. Meanwhile, 76.16% of users stated that the features provided and their configuration could help them in project management. The research results show that SaaS has great potential to help companies to manage projects effectively. In future research, various factors in different project management can be explored deeper, so that SaaS becomes more configurable and used by a wider variety of users.
越来越多的公司采用软件即服务(SaaS)作为项目管理工具。与传统的信息系统软件相比,SaaS 具有更大的灵活性、可用性和可访问性。在本研究中,SaaS 被用作创建项目管理应用程序的基础,包括记录工作计划、每个用户的绩效进度和会议文件。文献研究的各个阶段是通过查阅期刊和书籍进行的。使用黑盒测试进行试验。验证试验是通过让程序员团队参与进来,查看系统算法的流程。验证试验是通过请参与项目实施的不同用户试用系统,并请用户填写与项目管理功能易用性有关的调查问卷来进行的。这两个阶段的试用都取得了良好的效果,77.8% 的用户表示,SaaS 概念确实帮助了他们,系统安装灵活,等待时间短。同时,76.16% 的用户表示所提供的功能及其配置有助于他们进行项目管理。研究结果表明,SaaS 在帮助企业有效管理项目方面具有巨大潜力。在今后的研究中,可以对不同项目管理中的各种因素进行更深入的探讨,从而使 SaaS 具有更强的可配置性,为更多的用户所使用。
{"title":"Exploration of Software as a Service (SaaS) as a Project Management Tools","authors":"Liliana, Daniel Soesanto, Bambang Prijambodo, Jasti Ohanna","doi":"10.34148/teknika.v13i2.933","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.933","url":null,"abstract":"Companies increasingly adopt software as a Service (SaaS) as a project management tool. SaaS offers greater flexibility, availability, and accessibility than traditional information system software. In this study, SaaS is used as the basis for creating project management applications, including recording work plans, the progress of each user's performance, and meeting documentation. The stages of the literature study are carried out by looking at journals and books. The trial was carried out using black-box testing. Verification trials are carried out by involving a team of programmers to see the flow of the system algorithm. Validation trials are carried out by asking various users involved in project implementation to try the system and asking users to fill out questionnaires related to the ease of use of project management features. The two stages of the trial showed good results, as evidenced by 77.8% of users stating that the SaaS concept really helped them with the flexibility of system installation with a short waiting time. Meanwhile, 76.16% of users stated that the features provided and their configuration could help them in project management. The research results show that SaaS has great potential to help companies to manage projects effectively. In future research, various factors in different project management can be explored deeper, so that SaaS becomes more configurable and used by a wider variety of users.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"119 50","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141665293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Klasifikasi Penyakit Paru-Paru Berdasarkan Peningkatan Kualitas Kontras dan EfficientNet Menggunakan Gambar X-Ray 基于对比度质量增强和 EfficientNet 的 X 射线图像肺病分类法
Pub Date : 2024-07-06 DOI: 10.34148/teknika.v13i2.881
Asfa Dhevi Azzumzumi, M. Hanafi, W. M. P. Dhuhita
COVID-19 dan penyakit paru-paru telah menjadi faktor utama penyebab kematian manusia di seluruh dunia. Kematian pasien dipengaruhi oleh keterlambatan deteksi dini. Sebagian besar profesional medis menggunakan gambar untuk mengidentifikasi kondisi paru-paru. Namun, para ahli yang dapat me-diagnosis dengan gambar sangat terbatas. Diagnosis gambar mendiagnosa menggunakan penglihatan manusia secara konvensional. Klasifikasi penyakit paru-paru sangat bervariasi. Masalah yang disebutkan di atas menunjukkan bahwa deteksi penyakit paru-paru dengan Artificial Intelligence (AI) yang efektif telah ditetapkan. Namun, sebagian besar hasil penyakit paru-paru salah didiagnosis. Bagi pasien, masalah ini menjadi masalah besar. Bertujuan untuk menangani klasifikasi penyakit paru-paru dengan deteksi kesalahan yang tinggi, kami menggunakan beberapa teknik pre-processing gambar dan menerapkan model pembelajaran mendalam dalam EfficientNet. Model Pre-processing termasuk augmentasi, peningkatan white balance, dan peningkatan kontras. Berdasarkan penelitian sebelumnya, mayoritas proses analisa gambar medis mengalami kualitas gambar yang rendah. Berdasarkan laporan eksperimen, model yang kami usulkan mencapai hasil yang signifikan dalam mengurangi kesalahan deteksi pada klasifikasi penyakit paru-paru. Dimana hasil F1 score-nya 0,97, recallnya 0,98, presisinya 0,96, dan akurasinya 0,97. Kami mempertimbangkan untuk menggunakan model yang kami usulkan dalam klasifikasi multi-class. Kami mengevaluasi model yang kami usulkan menggunakan evaluation metric dan AUC Curve.
COVID-19 和肺部疾病已成为导致全球人类死亡的主要因素。患者死亡率受到早期检测延误的影响。大多数医疗专业人员使用图像来识别肺部疾病。然而,能够利用图像进行诊断的专家却非常有限。图像诊断利用的是传统的人类视觉。肺部疾病的分类差异很大。上述问题表明,利用人工智能(AI)有效检测肺部疾病的方法已经确立。然而,大多数肺病结果都是误诊。对于患者来说,这成为了一个大问题。为了解决高误差检测的肺病分类问题,我们利用了多种图像预处理技术,并在效能网络中应用了深度学习模型。预处理模型包括增强、白平衡增强和对比度增强。根据以往的研究,大多数医学图像分析过程都存在图像质量低的问题。根据实验报告,我们提出的模型在减少肺病分类检测误差方面取得了显著效果。F1 得分为 0.97,召回率为 0.98,精确率为 0.96,准确率为 0.97。我们考虑在多类分类中使用我们提出的模型。我们使用评价指标和 AUC 曲线来评估我们提出的模型。
{"title":"Klasifikasi Penyakit Paru-Paru Berdasarkan Peningkatan Kualitas Kontras dan EfficientNet Menggunakan Gambar X-Ray","authors":"Asfa Dhevi Azzumzumi, M. Hanafi, W. M. P. Dhuhita","doi":"10.34148/teknika.v13i2.881","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.881","url":null,"abstract":"COVID-19 dan penyakit paru-paru telah menjadi faktor utama penyebab kematian manusia di seluruh dunia. Kematian pasien dipengaruhi oleh keterlambatan deteksi dini. Sebagian besar profesional medis menggunakan gambar untuk mengidentifikasi kondisi paru-paru. Namun, para ahli yang dapat me-diagnosis dengan gambar sangat terbatas. Diagnosis gambar mendiagnosa menggunakan penglihatan manusia secara konvensional. Klasifikasi penyakit paru-paru sangat bervariasi. Masalah yang disebutkan di atas menunjukkan bahwa deteksi penyakit paru-paru dengan Artificial Intelligence (AI) yang efektif telah ditetapkan. Namun, sebagian besar hasil penyakit paru-paru salah didiagnosis. Bagi pasien, masalah ini menjadi masalah besar. Bertujuan untuk menangani klasifikasi penyakit paru-paru dengan deteksi kesalahan yang tinggi, kami menggunakan beberapa teknik pre-processing gambar dan menerapkan model pembelajaran mendalam dalam EfficientNet. Model Pre-processing termasuk augmentasi, peningkatan white balance, dan peningkatan kontras. Berdasarkan penelitian sebelumnya, mayoritas proses analisa gambar medis mengalami kualitas gambar yang rendah. Berdasarkan laporan eksperimen, model yang kami usulkan mencapai hasil yang signifikan dalam mengurangi kesalahan deteksi pada klasifikasi penyakit paru-paru. Dimana hasil F1 score-nya 0,97, recallnya 0,98, presisinya 0,96, dan akurasinya 0,97. Kami mempertimbangkan untuk menggunakan model yang kami usulkan dalam klasifikasi multi-class. Kami mengevaluasi model yang kami usulkan menggunakan evaluation metric dan AUC Curve.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141672569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Approach of 2D Platformer Mobile Game Development “Super Journey” 二维平台移动游戏 "超级之旅 "的创新开发方法
Pub Date : 2024-07-06 DOI: 10.34148/teknika.v13i2.857
Kelvin Ferdinand, Kevin Jonathan JM, Darius Andana Haris
This study investigates the design and development process of “Super Journey”, a 2D platformer mobile game aimed at enhancing user engagement and satisfaction through innovative game mechanics and design. Utilizing the Agile methodology, the development stages included conceptualization, design, implementation using the Unity game engine, and iterative testing and evaluation based on user feedback. This development process involved crafting a detailed game design document, creating initial sketches and prototypes, and integrating graphical elements, animations, and game mechanics. The game features 3 levels with simple controls, visually appealing pixel art, and progressively challenging levels. A survey conducted with 20 participants revealed high overall satisfaction (4.15 out of 5), with particular praise for level design (4.25) and game mechanics (4.2). Feedback indicated areas for improvement, such as balancing difficulty levels and incorporating more diverse obstacles and enemies. The findings underscore the importance of agile, user-centered design in game development and provide insights for future iterations to further enhance the gaming experience. “Super Journey” exemplifies the effective integration of classic platformer elements with modern innovations, highlighting its potential in the competitive mobile gaming market. The results of this research are expected to serve as a reference and inspiration for other game developers to create superior products by combining innovative technology and thoughtful design.
本研究调查了 "超级旅程 "的设计和开发过程,这是一款二维平台手机游戏,旨在通过创新的游戏机制和设计提高用户参与度和满意度。利用敏捷方法,开发阶段包括构思、设计、使用 Unity 游戏引擎实施,以及根据用户反馈进行迭代测试和评估。开发过程包括制作详细的游戏设计文档、创建初始草图和原型,以及整合图形元素、动画和游戏机制。该游戏有 3 个关卡,控制简单,像素艺术极具视觉吸引力,关卡的难度逐级递增。对 20 名参与者进行的调查显示,总体满意度很高(4.15 分,满分 5 分),尤其是对关卡设计(4.25 分)和游戏机制(4.2 分)给予了高度评价。反馈意见指出了需要改进的地方,如平衡难度级别,加入更多不同的障碍和敌人。这些发现强调了以用户为中心的敏捷设计在游戏开发中的重要性,并为今后进一步提升游戏体验的迭代提供了启示。"超级旅程》是经典平台游戏元素与现代创新有效融合的典范,彰显了其在竞争激烈的移动游戏市场中的潜力。本研究的成果有望为其他游戏开发商提供参考和启发,帮助他们将创新技术与周到设计相结合,创造出卓越的产品。
{"title":"Innovative Approach of 2D Platformer Mobile Game Development “Super Journey”","authors":"Kelvin Ferdinand, Kevin Jonathan JM, Darius Andana Haris","doi":"10.34148/teknika.v13i2.857","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.857","url":null,"abstract":"This study investigates the design and development process of “Super Journey”, a 2D platformer mobile game aimed at enhancing user engagement and satisfaction through innovative game mechanics and design. Utilizing the Agile methodology, the development stages included conceptualization, design, implementation using the Unity game engine, and iterative testing and evaluation based on user feedback. This development process involved crafting a detailed game design document, creating initial sketches and prototypes, and integrating graphical elements, animations, and game mechanics. The game features 3 levels with simple controls, visually appealing pixel art, and progressively challenging levels. A survey conducted with 20 participants revealed high overall satisfaction (4.15 out of 5), with particular praise for level design (4.25) and game mechanics (4.2). Feedback indicated areas for improvement, such as balancing difficulty levels and incorporating more diverse obstacles and enemies. The findings underscore the importance of agile, user-centered design in game development and provide insights for future iterations to further enhance the gaming experience. “Super Journey” exemplifies the effective integration of classic platformer elements with modern innovations, highlighting its potential in the competitive mobile gaming market. The results of this research are expected to serve as a reference and inspiration for other game developers to create superior products by combining innovative technology and thoughtful design.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":" 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141671783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redesigning User Interface of Datascripmall Mobile Apps Using User Centered Design Method 使用以用户为中心的设计方法重新设计 Datascripmall 移动应用程序的用户界面
Pub Date : 2024-07-06 DOI: 10.34148/teknika.v13i2.854
Nicholas Hiu, Yana Erlyana
The rapid growth of the e-commerce industry, driven by technological advancements and increased internet access, has intensified competition for attracting and retaining customers. In Indonesia, the shift from desktop computers to smartphones has made mobile commerce (m-commerce) increasingly dominant. PT Datascrip, a leading Indonesian company, launched Datascripmall, a B2C and B2B e-commerce marketplace, in August 2020. Despite initial success, a decline in mobile app users indicated a need for an improved user interface (UI) and user experience (UX). This research underscores the urgent need to redesign the Datascripmall mobile app's UI using the User-Centered Design (UCD) methodology, focusing on user needs and preferences. The study employed questionnaires to identify the need for clearer explanations and a more consistent interface. Adding smart features and shortcuts for experienced users was found to boost efficiency and satisfaction. Interviews with the Datascripmall manager confirmed the necessity of a UI/UX redesign to enhance mobile app user numbers. The UCD process involved understanding the context of use, specifying user requirements, designing solutions, and evaluating them against these requirements. The study highlights the benefits of a redesigned UI/UX, enhancing the user experience with greater intuitiveness and engagement. Both qualitative and quantitative data support recommendations for creating a user-friendly interface and increasing overall user engagement. The result of this redesign is a prototype framework developed using Figma, which encompasses page structure, features, and content, providing a comprehensive view of the Datascripmall application UI design. This redesign aims to enhance user satisfaction and increase user numbers, leading to a more comfortable and engaging shopping experience.
在技术进步和互联网普及的推动下,电子商务行业迅速发展,加剧了吸引和留住客户的竞争。在印度尼西亚,从台式电脑到智能手机的转变使移动商务(m-commerce)日益占据主导地位。印尼领先企业 PT Datascrip 于 2020 年 8 月推出了 B2C 和 B2B 电子商务市场 Datascripmall。尽管取得了初步成功,但移动应用程序用户数量的下降表明需要改进用户界面(UI)和用户体验(UX)。本研究强调,迫切需要采用以用户为中心的设计(UCD)方法重新设计 Datascripmall 移动应用程序的用户界面,重点关注用户需求和偏好。研究采用问卷调查的方式来确定用户对更清晰的解释和更一致的界面的需求。研究发现,为有经验的用户增加智能功能和快捷方式可以提高效率和满意度。与 Datascripmall 经理的访谈证实,有必要重新设计用户界面/用户体验,以提高移动应用程序的用户数量。用户中心设计过程包括了解使用环境、明确用户需求、设计解决方案并根据这些需求对其进行评估。研究强调了重新设计用户界面/用户体验的好处,即通过提高直观性和参与度来增强用户体验。定性和定量数据都支持创建用户友好界面和提高整体用户参与度的建议。此次重新设计的成果是使用 Figma 开发的原型框架,其中包括页面结构、功能和内容,为 Datascripmall 应用程序的用户界面设计提供了一个全面的视图。此次重新设计旨在提高用户满意度,增加用户数量,从而带来更舒适、更吸引人的购物体验。
{"title":"Redesigning User Interface of Datascripmall Mobile Apps Using User Centered Design Method","authors":"Nicholas Hiu, Yana Erlyana","doi":"10.34148/teknika.v13i2.854","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.854","url":null,"abstract":"The rapid growth of the e-commerce industry, driven by technological advancements and increased internet access, has intensified competition for attracting and retaining customers. In Indonesia, the shift from desktop computers to smartphones has made mobile commerce (m-commerce) increasingly dominant. PT Datascrip, a leading Indonesian company, launched Datascripmall, a B2C and B2B e-commerce marketplace, in August 2020. Despite initial success, a decline in mobile app users indicated a need for an improved user interface (UI) and user experience (UX). This research underscores the urgent need to redesign the Datascripmall mobile app's UI using the User-Centered Design (UCD) methodology, focusing on user needs and preferences. The study employed questionnaires to identify the need for clearer explanations and a more consistent interface. Adding smart features and shortcuts for experienced users was found to boost efficiency and satisfaction. Interviews with the Datascripmall manager confirmed the necessity of a UI/UX redesign to enhance mobile app user numbers. The UCD process involved understanding the context of use, specifying user requirements, designing solutions, and evaluating them against these requirements. The study highlights the benefits of a redesigned UI/UX, enhancing the user experience with greater intuitiveness and engagement. Both qualitative and quantitative data support recommendations for creating a user-friendly interface and increasing overall user engagement. The result of this redesign is a prototype framework developed using Figma, which encompasses page structure, features, and content, providing a comprehensive view of the Datascripmall application UI design. This redesign aims to enhance user satisfaction and increase user numbers, leading to a more comfortable and engaging shopping experience.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":" 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141673271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Design of 3D Virtual Reality Animation of Javan Rhino for Educational Media of Endangered Animals in Indonesia 为印尼濒危动物教育媒体设计爪哇犀牛三维虚拟现实动画
Pub Date : 2024-07-04 DOI: 10.34148/teknika.v13i2.897
Kent Vin Lievianto, Yana Erlyana
Indonesia is one of the largest archipelagic countries in the world. Indonesia has very rich biodiversity but is facing serious threats. Many endemic species are threatened with extinction due to factors such as climate change, habitat loss, illegal trade and poaching. This research highlights the urgent need for education about endangered animals, with a focus on the Javan Rhinoceros (Rhinoceros Sondaicus) which is categorized as Critically Endangered by the International Union for Conservation of Nature (IUCN). This research was created for Animalium, a research facility under the National Research and Innovation Agency (BRIN), which still lacks interactive Virtual Reality media for education. The main aim of this research is to design a 3D VR animation about the Javan Rhino to increase education and awareness about its conservation. Interviews with educators at Animalium revealed the need for such a medium to prevent damage to physical replicas and to engage visitors, especially children, in a more immersive and interactive learning experience. Observations showed that there were no 3D VR-based educational tools in the facility. The implementation of VR technology has the potential to significantly increase visitor engagement and experiences regarding the conservation of endangered species, in line with Sustainable Development Goals (SDGs) related to terrestrial ecosystems. This research highlights the potential of VR to provide immersive and interactive educational experiences, increase public awareness, and support wildlife conservation efforts, especially the Javan Rhino. The result of this design is an Unreal Engine project file that can be used in Animalium to create an immersive and interactive educational experience, increase public awareness, and support wildlife conservation efforts, especially the Javan Rhino.
印度尼西亚是世界上最大的群岛国家之一。印尼拥有非常丰富的生物多样性,但也面临着严重的威胁。由于气候变化、栖息地丧失、非法贸易和偷猎等因素,许多特有物种濒临灭绝。这项研究强调了开展濒危动物教育的迫切需要,重点关注被世界自然保护联盟(IUCN)列为极度濒危的爪哇犀牛(Rhinoceros Sondaicus)。这项研究是为国家研究与创新局(BRIN)下属的研究机构 Animalium 制作的,该机构仍然缺乏用于教育的交互式虚拟现实媒体。这项研究的主要目的是设计一个关于爪哇犀牛的三维虚拟现实动画,以提高教育水平和保护意识。与动物馆教育工作者的访谈显示,需要这样一种媒体来防止实体复制品受到损坏,并让游客(尤其是儿童)获得更加身临其境的互动学习体验。观察结果表明,该设施没有基于 3D VR 的教育工具。根据与陆地生态系统有关的可持续发展目标(SDGs),实施 VR 技术有可能大大提高游客在保护濒危物种方面的参与度和体验。这项研究强调了 VR 在提供沉浸式互动教育体验、提高公众意识和支持野生动物保护工作(尤其是爪哇犀牛)方面的潜力。本设计的成果是一个虚幻引擎项目文件,可用于 Animalium,以创建身临其境的互动教育体验,提高公众意识,支持野生动物保护工作,尤其是爪哇犀牛。
{"title":"The Design of 3D Virtual Reality Animation of Javan Rhino for Educational Media of Endangered Animals in Indonesia","authors":"Kent Vin Lievianto, Yana Erlyana","doi":"10.34148/teknika.v13i2.897","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.897","url":null,"abstract":"Indonesia is one of the largest archipelagic countries in the world. Indonesia has very rich biodiversity but is facing serious threats. Many endemic species are threatened with extinction due to factors such as climate change, habitat loss, illegal trade and poaching. This research highlights the urgent need for education about endangered animals, with a focus on the Javan Rhinoceros (Rhinoceros Sondaicus) which is categorized as Critically Endangered by the International Union for Conservation of Nature (IUCN). This research was created for Animalium, a research facility under the National Research and Innovation Agency (BRIN), which still lacks interactive Virtual Reality media for education. The main aim of this research is to design a 3D VR animation about the Javan Rhino to increase education and awareness about its conservation. Interviews with educators at Animalium revealed the need for such a medium to prevent damage to physical replicas and to engage visitors, especially children, in a more immersive and interactive learning experience. Observations showed that there were no 3D VR-based educational tools in the facility. The implementation of VR technology has the potential to significantly increase visitor engagement and experiences regarding the conservation of endangered species, in line with Sustainable Development Goals (SDGs) related to terrestrial ecosystems. This research highlights the potential of VR to provide immersive and interactive educational experiences, increase public awareness, and support wildlife conservation efforts, especially the Javan Rhino. The result of this design is an Unreal Engine project file that can be used in Animalium to create an immersive and interactive educational experience, increase public awareness, and support wildlife conservation efforts, especially the Javan Rhino.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":" 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141678412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model Optimasi SVM Dengan PSO-GA dan SMOTE Dalam Menangani High Dimensional dan Imbalance Data Banjir 利用 PSO-GA 和 SMOTE 的 SVM 优化模型处理高维和不平衡洪水数据
Pub Date : 2024-07-01 DOI: 10.34148/teknika.v13i2.876
Raenald Syaputra, Taghfirul Azhima Yoga Siswa, Wawan Joko Pranoto
Banjir merupakan salah satu bencana alam yang sering terjadi di Indonesia, termasuk di Kota Samarinda dengan 18-33 titik desa terdampak dari tahun 2018-2021. Penggunaan machine learning dalam mengklasifikasi bencana banjir sangat penting untuk memprediksi kejadian di masa mendatang. Beberapa penelitian sebelumnya terkait klasifikasi data banjir dalam 3 tahun terakhir telah dilakukan. Namun, dari beberapa penelitian tersebut memunculkan masalah terkait dengan dataset high dimensional yang dapat menurunkan performa model klasifikasi dan menyebabkan overfitting. Selain itu, masalah lain juga muncul dalam hal imbalance data yang menyebabkan bias terhadap kelas mayoritas dan representasi yang tidak akurat. Oleh karena itu, permasalahan dataset high dimensional dan imbalance data merupakan tantangan spesifik yang harus diatas dalam klasifkasi data banjir Kota Samarinda. Penelitian ini bertujuan mengidentifkasi fitur-fitur yang diperoleh dari seleksi fitur Genetic Algorithm (GA) yang memiliki pengaruh terhadap akurasi klasifikasi data banjir Kota Samarinda menggunakan algoritma Support Vector Machine (SVM), serta meningkatkan akurasi klasifikasi data banjir di Kota Samarinda dengan mengimplementasikan algoritma SVM yang dikombinasikan dengan metode Synthetic Minority Oversampling Technique (SMOTE) untuk oversampling, seleksi fitur dengan GA dan optimasi menggunakan Particle Swarm Optimization (PSO). Teknik validasi yang digunakan adalah 10-fold cross validation dan evaluasi performa menggunakan confusion matrix. Data yang digunakan berasal dari BPBD (Badan Penanggulangan Bencana Daerah) dan BMKG (Badan Meteorologi, Klimatologi, dan Geofisika) Kota Samarinda pada tahun 2021-2023 terdiri dari 11 fitur dan 1.095 record. Hasil penelitian menunjukkan bahwa fitur-fitur penting yang terpilih melalui GA adalah temperatur maksimum, kecepatan angin maksimum, arah angin maksimum, arah angin terbanyak, lamanya penyinaran matahari dan kecepatan angin rata-rata. Dengan kombinasi metode SVM, SMOTE, GA dan PSO, akurasi klasifikasi data banjir mencapai 82,28%. Namun, penelitian ini juga menghadapi tantangan seperti kontradiksi hasil dengan penelitian lain terkait penggunaan SMOTE dan variasi hasil akibat karakteristik dataset serta metode pembagian data yang berbeda. Hasil penelitian ini dapat digunakan oleh pemerintah daerah dan badan penanggulangan bencana daerah Kota Samarinda untuk memprediksi kejadian banjir dengan lebih akurat, serta memungkinkan tindakan pencegahan yang lebih efektif. Penerapan hasil penelitian ini dapat meningkatkan efektivitas dalam mitigasi bencana banjir Kota Samarinda.
洪水是印度尼西亚经常发生的自然灾害之一,其中三马林达市在 2018-2021 年间有 18-33 个村庄受灾。使用机器学习对洪水灾害进行分类,对于预测未来事件非常重要。在过去 3 年中,已经开展了多项与洪水数据分类相关的研究。然而,其中一些研究提出了与高维数据集相关的问题,这些问题会降低分类模型的性能并导致过拟合。此外,还出现了其他一些问题,如数据不平衡,导致偏向多数类和不准确的表示。因此,高维数据集和数据不平衡问题是对三马林达市洪水数据进行分类时必须克服的具体挑战。本研究旨在利用支持向量机(SVM)算法,识别通过遗传算法(GA)特征选择获得的对三马林达市洪水数据分类准确性有影响的特征,并通过实施 SVM 算法结合合成少数群体超采样技术(SMOTE)方法进行超采样、利用 GA 进行特征选择以及利用粒子群优化(PSO)进行优化,提高三马林达市洪水数据分类的准确性。使用的验证技术是 10 倍交叉验证,并使用混淆矩阵进行性能评估。所使用的数据来自 2021-2023 年萨马林达市的 BPBD(地区灾害管理局)和 BMKG(气象、气候学和地球物理学局),包括 11 个特征和 1,095 条记录。结果显示,通过 GA 选出的重要特征包括最高气温、最大风速、最大风向、最多风向、日照长度和平均风速。结合 SVM、SMOTE、GA 和 PSO 方法,洪水数据的分类准确率达到了 82.28%。然而,这项研究也面临着一些挑战,如与其他使用 SMOTE 的相关研究结果存在矛盾,以及由于数据集特征和数据共享方法不同而导致的结果差异。三马林达市的地方政府和地方灾害管理机构可以利用本研究的结果更准确地预测洪水事件,并采取更有效的预防措施。本研究成果的应用可提高萨马林达市洪灾减灾的有效性。
{"title":"Model Optimasi SVM Dengan PSO-GA dan SMOTE Dalam Menangani High Dimensional dan Imbalance Data Banjir","authors":"Raenald Syaputra, Taghfirul Azhima Yoga Siswa, Wawan Joko Pranoto","doi":"10.34148/teknika.v13i2.876","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.876","url":null,"abstract":"Banjir merupakan salah satu bencana alam yang sering terjadi di Indonesia, termasuk di Kota Samarinda dengan 18-33 titik desa terdampak dari tahun 2018-2021. Penggunaan machine learning dalam mengklasifikasi bencana banjir sangat penting untuk memprediksi kejadian di masa mendatang. Beberapa penelitian sebelumnya terkait klasifikasi data banjir dalam 3 tahun terakhir telah dilakukan. Namun, dari beberapa penelitian tersebut memunculkan masalah terkait dengan dataset high dimensional yang dapat menurunkan performa model klasifikasi dan menyebabkan overfitting. Selain itu, masalah lain juga muncul dalam hal imbalance data yang menyebabkan bias terhadap kelas mayoritas dan representasi yang tidak akurat. Oleh karena itu, permasalahan dataset high dimensional dan imbalance data merupakan tantangan spesifik yang harus diatas dalam klasifkasi data banjir Kota Samarinda. Penelitian ini bertujuan mengidentifkasi fitur-fitur yang diperoleh dari seleksi fitur Genetic Algorithm (GA) yang memiliki pengaruh terhadap akurasi klasifikasi data banjir Kota Samarinda menggunakan algoritma Support Vector Machine (SVM), serta meningkatkan akurasi klasifikasi data banjir di Kota Samarinda dengan mengimplementasikan algoritma SVM yang dikombinasikan dengan metode Synthetic Minority Oversampling Technique (SMOTE) untuk oversampling, seleksi fitur dengan GA dan optimasi menggunakan Particle Swarm Optimization (PSO). Teknik validasi yang digunakan adalah 10-fold cross validation dan evaluasi performa menggunakan confusion matrix. Data yang digunakan berasal dari BPBD (Badan Penanggulangan Bencana Daerah) dan BMKG (Badan Meteorologi, Klimatologi, dan Geofisika) Kota Samarinda pada tahun 2021-2023 terdiri dari 11 fitur dan 1.095 record. Hasil penelitian menunjukkan bahwa fitur-fitur penting yang terpilih melalui GA adalah temperatur maksimum, kecepatan angin maksimum, arah angin maksimum, arah angin terbanyak, lamanya penyinaran matahari dan kecepatan angin rata-rata. Dengan kombinasi metode SVM, SMOTE, GA dan PSO, akurasi klasifikasi data banjir mencapai 82,28%. Namun, penelitian ini juga menghadapi tantangan seperti kontradiksi hasil dengan penelitian lain terkait penggunaan SMOTE dan variasi hasil akibat karakteristik dataset serta metode pembagian data yang berbeda. Hasil penelitian ini dapat digunakan oleh pemerintah daerah dan badan penanggulangan bencana daerah Kota Samarinda untuk memprediksi kejadian banjir dengan lebih akurat, serta memungkinkan tindakan pencegahan yang lebih efektif. Penerapan hasil penelitian ini dapat meningkatkan efektivitas dalam mitigasi bencana banjir Kota Samarinda.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"40 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141690543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perbaikan Akurasi Random Forest Dengan ANOVA Dan SMOTE Pada Klasifikasi Data Stunting 利用方差分析和 SMOTE 提高随机森林对发育迟缓数据分类的准确性
Pub Date : 2024-07-01 DOI: 10.34148/teknika.v13i2.875
Ari Ahmad Dhani, Taghfirul Azhima Yoga Siswa, Wawan Joko Pranoto
Stunting terus menjadi isu kesehatan masyarakat yang kritis di Indonesia, khususnya di Kota Samarinda yang mencatat prevalensi sebesar 25,3% pada tahun 2022, menjadi yang tertinggi kedua di Provinsi Kalimantan Timur. Di tengah prioritas nasional untuk riset 2020-2024, penggunaan data mining untuk klasifikasi stunting memperlihatkan potensi yang signifikan namun tetap menghadapi tantangan dalam menangani data berdimensi tinggi dan ketidakseimbangan kelas. Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi stunting menggunakan metode Random Forest (RF) yang diintegrasikan dengan seleksi fitur ANOVA dan teknik SMOTE untuk menyeimbangkan kelas. Data yang digunakan dalam penelitian ini bersumber dari Dinas Kesehatan Kota Samarinda, meliputi 26 Puskesmas dengan 21 atribut dan total 150.466 record. Teknik validasi yang dipakai adalah cross-validation k =10. Hasil menunjukkan peningkatan akurasi dari 98,83% menjadi 99,77% naik sebesar 0,94% setelah penerapan seleksi fitur ANOVA. Fitur ZS TB/U, ZS BB/U, dan BB/U diidentifikasi sebagai yang paling berpengaruh. Peningkatan ini menunjukkan efektivitas integrasi metode dalam mengatasi masalah stunting pada dataset yang kompleks dan tidak seimbang, ini diharapkan dapat mendukung kebijakan dan intervensi kesehatan lebih lanjut di kawasan tersebut.
在印度尼西亚,发育迟缓仍然是一个严重的公共卫生问题,特别是在三马林达市,2022 年的发病率为 25.3%,在东加里曼丹省排名第二。在 2020-2024 年国家优先研究领域中,使用数据挖掘进行发育迟缓分类显示出巨大潜力,但在处理高维数据和类不平衡方面仍面临挑战。本研究旨在使用随机森林(RF)方法,结合方差分析特征选择和用于类平衡的 SMOTE 技术,提高发育迟缓分类的准确性。本研究使用的数据来自三马林达市卫生局,涵盖 26 个 Puskesmas,共有 21 个属性和 150,466 条记录。使用的验证技术是交叉验证 k = 10。结果显示,应用方差分析特征选择后,准确率从 98.83% 提高到 99.77%,提高了 0.94%。ZS TB/U、ZS BB/U 和 BB/U 被认为是最有影响力的特征。这一改进表明,该方法集成在复杂和不平衡数据集中处理发育迟缓问题方面非常有效,有望为该地区进一步的卫生政策和干预措施提供支持。
{"title":"Perbaikan Akurasi Random Forest Dengan ANOVA Dan SMOTE Pada Klasifikasi Data Stunting","authors":"Ari Ahmad Dhani, Taghfirul Azhima Yoga Siswa, Wawan Joko Pranoto","doi":"10.34148/teknika.v13i2.875","DOIUrl":"https://doi.org/10.34148/teknika.v13i2.875","url":null,"abstract":"Stunting terus menjadi isu kesehatan masyarakat yang kritis di Indonesia, khususnya di Kota Samarinda yang mencatat prevalensi sebesar 25,3% pada tahun 2022, menjadi yang tertinggi kedua di Provinsi Kalimantan Timur. Di tengah prioritas nasional untuk riset 2020-2024, penggunaan data mining untuk klasifikasi stunting memperlihatkan potensi yang signifikan namun tetap menghadapi tantangan dalam menangani data berdimensi tinggi dan ketidakseimbangan kelas. Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi stunting menggunakan metode Random Forest (RF) yang diintegrasikan dengan seleksi fitur ANOVA dan teknik SMOTE untuk menyeimbangkan kelas. Data yang digunakan dalam penelitian ini bersumber dari Dinas Kesehatan Kota Samarinda, meliputi 26 Puskesmas dengan 21 atribut dan total 150.466 record. Teknik validasi yang dipakai adalah cross-validation k =10. Hasil menunjukkan peningkatan akurasi dari 98,83% menjadi 99,77% naik sebesar 0,94% setelah penerapan seleksi fitur ANOVA. Fitur ZS TB/U, ZS BB/U, dan BB/U diidentifikasi sebagai yang paling berpengaruh. Peningkatan ini menunjukkan efektivitas integrasi metode dalam mengatasi masalah stunting pada dataset yang kompleks dan tidak seimbang, ini diharapkan dapat mendukung kebijakan dan intervensi kesehatan lebih lanjut di kawasan tersebut.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"51 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141712309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors That Influence Repurchase Intention: A Systematic Literature Review 影响回购意愿的因素:系统文献综述
Pub Date : 2023-11-09 DOI: 10.34148/teknika.v12i3.693
Muhammad Amfahtori Wijarnoko, Edwin Pramana, Joan Santoso
This research is a systematic literature review of factors that influence repurchase intention. Repurchase intention is important for companies because it will shape customer behavior to become loyal, customers usually tend to have an interest in buying products or services repeatedly so that the company will benefit from products or services that have been sold. The aim of this research is to provide insights into the research trends and issues in the studies of Repurchase Intention. The literature search focused on finding journals published between 2018 and 2023. Only English-language journals with the keyword Repurchase Intention were used in this research. Researchers found 80 journals that matched these keywords but after reading the collected articles thoroughly and removing duplicate and irrelevant articles, the authors produced 50 articles to be used in this research. The findings highlight key drivers for increasing sales: Satisfaction, Trust, Perceived Value, Price, and Word of Mouth. Additionally, 14 moderating factors were identified, with Age being the most prominent in four articles. Korea, India, and Indonesia lead research contributions, each with six articles. Structural Equation Modeling (SEM) is the prevailing measurement method, while other approaches persist. Companies are recommended to prioritize these core factors for consumer engagement. Future research should delve into unexplored moderating factors and alternative measurement methods, enriching our understanding of this vital field.
本研究对影响回购意愿的因素进行了系统的文献综述。重复购买意向对公司来说很重要,因为它会塑造顾客的忠诚行为,顾客通常倾向于有兴趣反复购买产品或服务,这样公司就会从已经出售的产品或服务中受益。本研究的目的是洞察回购意愿研究的研究趋势和问题。文献检索的重点是寻找2018年至2023年之间发表的期刊。本研究仅使用以“回购意向”为关键词的英文期刊。研究人员找到了与这些关键词相匹配的80种期刊,但在仔细阅读收集的文章后,删除重复和不相关的文章,制作了50篇论文用于本次研究。调查结果强调了增加销售的关键驱动因素:满意度、信任、感知价值、价格和口碑。此外,确定了14个调节因素,其中年龄在四篇文章中最为突出。韩国、印度和印度尼西亚的研究贡献最多,各有6篇文章。结构方程模型(SEM)是主要的测量方法,而其他方法仍然存在。建议公司优先考虑这些消费者参与的核心因素。未来的研究应深入探索尚未探索的调节因素和替代测量方法,丰富我们对这一重要领域的理解。
{"title":"Factors That Influence Repurchase Intention: A Systematic Literature Review","authors":"Muhammad Amfahtori Wijarnoko, Edwin Pramana, Joan Santoso","doi":"10.34148/teknika.v12i3.693","DOIUrl":"https://doi.org/10.34148/teknika.v12i3.693","url":null,"abstract":"This research is a systematic literature review of factors that influence repurchase intention. Repurchase intention is important for companies because it will shape customer behavior to become loyal, customers usually tend to have an interest in buying products or services repeatedly so that the company will benefit from products or services that have been sold. The aim of this research is to provide insights into the research trends and issues in the studies of Repurchase Intention. The literature search focused on finding journals published between 2018 and 2023. Only English-language journals with the keyword Repurchase Intention were used in this research. Researchers found 80 journals that matched these keywords but after reading the collected articles thoroughly and removing duplicate and irrelevant articles, the authors produced 50 articles to be used in this research. The findings highlight key drivers for increasing sales: Satisfaction, Trust, Perceived Value, Price, and Word of Mouth. Additionally, 14 moderating factors were identified, with Age being the most prominent in four articles. Korea, India, and Indonesia lead research contributions, each with six articles. Structural Equation Modeling (SEM) is the prevailing measurement method, while other approaches persist. Companies are recommended to prioritize these core factors for consumer engagement. Future research should delve into unexplored moderating factors and alternative measurement methods, enriching our understanding of this vital field.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":" 20","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135291435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Teknika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1