钢结构建筑模型中受冲击荷载影响的悬挂式铅阻尼器的有效性

Herish Abdullah Hussein
{"title":"钢结构建筑模型中受冲击荷载影响的悬挂式铅阻尼器的有效性","authors":"Herish Abdullah Hussein","doi":"10.24018/ejeng.2024.9.4.3176","DOIUrl":null,"url":null,"abstract":"\n\n\n\nThis paper delves into an in-depth experimental investigation focusing on the dynamic behavior of steel frame buildings employing passive damping through suspended lead dampers. The primary objective revolves around scrutinizing a three-story steel frame building model to elucidate the effects of integrating lead dampers into the outer tubular square-section columns. By strategically embedding these dampers, the study aims to showcase the resultant reductions in both acceleration and displacement. To execute this analysis, an impact load is precisely applied to the mid-center of the middle column along the x-axis of the first story of the steel frame. The experimental setup employs six wireless accelerometers strategically positioned across the frame to capture comprehensive data on its response at diverse locations. Various quantities of lead dampers are systematically incorporated into each testing scenario to gauge the extent of passive damping’s influence on the structural response of steel buildings to impact loads. Throughout the experiments, acceleration-time relations are meticulously recorded at each story, facilitating a comparative assessment of outcomes with and without the presence of lead dampers. The findings of the study underscore a marked decrease in vibration levels at higher floors of the steel model subsequent to the installation of lead dampers within the structure. Furthermore, a noteworthy trend emerges indicating that an augmented number of lead dampers within the building yields a commensurate decrease in vibration amplitude. This detailed investigation offers valuable insights into the efficacy of passive damping mechanisms, thereby contributing to the advancement of seismic-resistant structural design practices.\n\n\n\n","PeriodicalId":12001,"journal":{"name":"European Journal of Engineering and Technology Research","volume":" 87","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of Suspended Lead Dampers in Steel Building Structural Model Subjected to Impact Load\",\"authors\":\"Herish Abdullah Hussein\",\"doi\":\"10.24018/ejeng.2024.9.4.3176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\nThis paper delves into an in-depth experimental investigation focusing on the dynamic behavior of steel frame buildings employing passive damping through suspended lead dampers. The primary objective revolves around scrutinizing a three-story steel frame building model to elucidate the effects of integrating lead dampers into the outer tubular square-section columns. By strategically embedding these dampers, the study aims to showcase the resultant reductions in both acceleration and displacement. To execute this analysis, an impact load is precisely applied to the mid-center of the middle column along the x-axis of the first story of the steel frame. The experimental setup employs six wireless accelerometers strategically positioned across the frame to capture comprehensive data on its response at diverse locations. Various quantities of lead dampers are systematically incorporated into each testing scenario to gauge the extent of passive damping’s influence on the structural response of steel buildings to impact loads. Throughout the experiments, acceleration-time relations are meticulously recorded at each story, facilitating a comparative assessment of outcomes with and without the presence of lead dampers. The findings of the study underscore a marked decrease in vibration levels at higher floors of the steel model subsequent to the installation of lead dampers within the structure. Furthermore, a noteworthy trend emerges indicating that an augmented number of lead dampers within the building yields a commensurate decrease in vibration amplitude. This detailed investigation offers valuable insights into the efficacy of passive damping mechanisms, thereby contributing to the advancement of seismic-resistant structural design practices.\\n\\n\\n\\n\",\"PeriodicalId\":12001,\"journal\":{\"name\":\"European Journal of Engineering and Technology Research\",\"volume\":\" 87\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Engineering and Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejeng.2024.9.4.3176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejeng.2024.9.4.3176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文深入探讨了通过悬挂式铅阻尼器采用被动阻尼的钢框架建筑的动态行为。主要目的是仔细研究三层钢框架建筑模型,以阐明将铅阻尼器集成到方形截面外管柱中的效果。通过战略性地嵌入这些阻尼器,该研究旨在展示由此产生的加速度和位移的减少。为了进行分析,我们沿钢结构框架第一层的 x 轴向,在中间支柱的中间位置精确施加了冲击荷载。实验装置采用了六个无线加速度计,战略性地放置在整个框架上,以获取不同位置的综合响应数据。在每个测试方案中都系统地加入了不同数量的铅阻尼器,以衡量被动阻尼对钢结构建筑在冲击荷载下的结构响应的影响程度。在整个实验过程中,每个楼层的加速度-时间关系都被仔细记录下来,以便对有无铅阻尼器的结果进行比较评估。研究结果表明,在钢结构模型中安装铅阻尼器后,较高楼层的振动水平明显降低。此外,一个值得注意的趋势表明,建筑物内铅阻尼器数量的增加会相应地降低振动幅度。这项详细的研究为了解被动阻尼机制的功效提供了宝贵的见解,从而促进了抗震结构设计实践的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effectiveness of Suspended Lead Dampers in Steel Building Structural Model Subjected to Impact Load
This paper delves into an in-depth experimental investigation focusing on the dynamic behavior of steel frame buildings employing passive damping through suspended lead dampers. The primary objective revolves around scrutinizing a three-story steel frame building model to elucidate the effects of integrating lead dampers into the outer tubular square-section columns. By strategically embedding these dampers, the study aims to showcase the resultant reductions in both acceleration and displacement. To execute this analysis, an impact load is precisely applied to the mid-center of the middle column along the x-axis of the first story of the steel frame. The experimental setup employs six wireless accelerometers strategically positioned across the frame to capture comprehensive data on its response at diverse locations. Various quantities of lead dampers are systematically incorporated into each testing scenario to gauge the extent of passive damping’s influence on the structural response of steel buildings to impact loads. Throughout the experiments, acceleration-time relations are meticulously recorded at each story, facilitating a comparative assessment of outcomes with and without the presence of lead dampers. The findings of the study underscore a marked decrease in vibration levels at higher floors of the steel model subsequent to the installation of lead dampers within the structure. Furthermore, a noteworthy trend emerges indicating that an augmented number of lead dampers within the building yields a commensurate decrease in vibration amplitude. This detailed investigation offers valuable insights into the efficacy of passive damping mechanisms, thereby contributing to the advancement of seismic-resistant structural design practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transitioning from “Grey to Green”: Nature-Based Solution Seawall for Coastal Protection Effectiveness of Suspended Lead Dampers in Steel Building Structural Model Subjected to Impact Load Effective Use of Catastrophe Multicriteria Decision Analysis in Delineating Groundwater Recharge Potential Zones Design of an Energy Efficient Buck Based LED Driver in DCM and CCM Visualization of Chladni Patterns at Low-Frequency Resonant and Non-Resonant Flexural Modes of Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1