为社交网络分析优化图论算法

S. Sahoo, Sasmita Mishra
{"title":"为社交网络分析优化图论算法","authors":"S. Sahoo, Sasmita Mishra","doi":"10.52783/cana.v31.834","DOIUrl":null,"url":null,"abstract":"Social network analysis (SNA) leverages graph theory to understand and visualize the complex relationships and structures within social networks. This research paper explores the optimization of graph theory algorithms tailored for SNA, focusing on efficiency improvements in handling large-scale networks. The study reviews key graph theory concepts, identifies common challenges in SNA, and evaluates various optimization techniques. Practical applications and case studies are presented to demonstrate the impact of these optimizations in real-world scenarios.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Graph Theory Algorithms for Social Network Analysis\",\"authors\":\"S. Sahoo, Sasmita Mishra\",\"doi\":\"10.52783/cana.v31.834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social network analysis (SNA) leverages graph theory to understand and visualize the complex relationships and structures within social networks. This research paper explores the optimization of graph theory algorithms tailored for SNA, focusing on efficiency improvements in handling large-scale networks. The study reviews key graph theory concepts, identifies common challenges in SNA, and evaluates various optimization techniques. Practical applications and case studies are presented to demonstrate the impact of these optimizations in real-world scenarios.\",\"PeriodicalId\":40036,\"journal\":{\"name\":\"Communications on Applied Nonlinear Analysis\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/cana.v31.834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

社会网络分析(SNA)利用图论来理解和可视化社会网络中的复杂关系和结构。本研究论文探讨了为 SNA 量身定制的图论算法的优化问题,重点是提高处理大规模网络的效率。研究回顾了关键图论概念,确定了 SNA 中的常见挑战,并评估了各种优化技术。论文还介绍了实际应用和案例研究,以展示这些优化技术在现实世界中的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Graph Theory Algorithms for Social Network Analysis
Social network analysis (SNA) leverages graph theory to understand and visualize the complex relationships and structures within social networks. This research paper explores the optimization of graph theory algorithms tailored for SNA, focusing on efficiency improvements in handling large-scale networks. The study reviews key graph theory concepts, identifies common challenges in SNA, and evaluates various optimization techniques. Practical applications and case studies are presented to demonstrate the impact of these optimizations in real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
An Comparison of Different Cluster Head Selection Techniques for Wireless Sensor Network Matthews Partial Metric Space Using F-Contraction A Common Fixed Point Result in Menger Space Some Applications via Coupled Fixed Point Theorems for (????, ????)-H-Contraction Mappings in Partial b- Metric Spaces ARRN: Leveraging Demographic Context for Improved Semantic Personalization in Hybrid Recommendation Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1