利用 Opt_Recurr 特征选择算法建立用于登革热预测的新型混合 SDR 模型

Dr. S. Nagasundaram
{"title":"利用 Opt_Recurr 特征选择算法建立用于登革热预测的新型混合 SDR 模型","authors":"Dr. S. Nagasundaram","doi":"10.52783/cana.v31.857","DOIUrl":null,"url":null,"abstract":"Dengue is a vector borne disease , which can be fatal at times . Early detection dengue of dengue is vital as no  vaccines have been developed for dengue yet..The process of eliminating irrelevant and  redundant  features from the data set  facilitates the optimal features selection . This study is proposed to select the Optimal features by using Opt_Recur algorithm  from the Dengue  dataset  , a hybrid SDR model which makes prediction with better accuracy when compared to the conventional classifiers  like the  Support Vector Machine (SVM), Decision Tree(DT) and the Random Forest (RF) classifiers.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Hybrid SDR Model for Dengue Prediction using Opt_Recurr Feature Selection Algorithm\",\"authors\":\"Dr. S. Nagasundaram\",\"doi\":\"10.52783/cana.v31.857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dengue is a vector borne disease , which can be fatal at times . Early detection dengue of dengue is vital as no  vaccines have been developed for dengue yet..The process of eliminating irrelevant and  redundant  features from the data set  facilitates the optimal features selection . This study is proposed to select the Optimal features by using Opt_Recur algorithm  from the Dengue  dataset  , a hybrid SDR model which makes prediction with better accuracy when compared to the conventional classifiers  like the  Support Vector Machine (SVM), Decision Tree(DT) and the Random Forest (RF) classifiers.\",\"PeriodicalId\":40036,\"journal\":{\"name\":\"Communications on Applied Nonlinear Analysis\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/cana.v31.857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

登革热是一种病媒传染的疾病,有时会致命。从数据集中剔除无关和冗余特征的过程有助于选择最佳特征。本研究建议使用 Opt_Recur 算法从登革热数据集中选择最佳特征,这是一种混合 SDR 模型,与支持向量机 (SVM)、决策树 (DT) 和随机森林 (RF) 等传统分类器相比,该模型的预测准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Hybrid SDR Model for Dengue Prediction using Opt_Recurr Feature Selection Algorithm
Dengue is a vector borne disease , which can be fatal at times . Early detection dengue of dengue is vital as no  vaccines have been developed for dengue yet..The process of eliminating irrelevant and  redundant  features from the data set  facilitates the optimal features selection . This study is proposed to select the Optimal features by using Opt_Recur algorithm  from the Dengue  dataset  , a hybrid SDR model which makes prediction with better accuracy when compared to the conventional classifiers  like the  Support Vector Machine (SVM), Decision Tree(DT) and the Random Forest (RF) classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
An Comparison of Different Cluster Head Selection Techniques for Wireless Sensor Network Matthews Partial Metric Space Using F-Contraction A Common Fixed Point Result in Menger Space Some Applications via Coupled Fixed Point Theorems for (????, ????)-H-Contraction Mappings in Partial b- Metric Spaces ARRN: Leveraging Demographic Context for Improved Semantic Personalization in Hybrid Recommendation Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1