Jean-Pierre Lorand, Sylvain Pont, Roger H. Hewins, Brigitte Zanda
{"title":"西北非 14672 号玄武闪长岩中冲击诱发的硫化铁普遍重熔:火星冲击阶段 S6/S7 的基准","authors":"Jean-Pierre Lorand, Sylvain Pont, Roger H. Hewins, Brigitte Zanda","doi":"10.1111/maps.14233","DOIUrl":null,"url":null,"abstract":"<p>Northwest Africa (NWA) 14672, the most highly shocked Martian meteorite so far, has experienced >50% melting, compatible with peak pressure >~65 Gpa, at a transition stage 6/7. Despite these extreme shock conditions, the meteorite still preserves a population of “large” Fe sulfide blebs from the pre-shock igneous assemblage. These primary blebs preserve characteristics of basaltic shergottites in term of modal abundance, preferential occurrence in interstitial pores along with late-crystallized phases (ilmenite, merrillite), and Ni-free pyrrhotite compositions. Primary sulfides underwent widespread shock-induced remelting, as indicated by perfect spherical morphologies when embedded in fine-grained silicate melt zones and a wealth of mineral/glass/vesicle inclusions. Extensive melting of Fe-sulfides is consistent with the decompression path experienced by NWA 14672 after the peak shock pressure at ~70 GPa. Primary sulfides acted as preferential sites for nucleation of vesicles of all sizes which helped sulfur degassing during decompression, leading to partial resorption of Fe-sulfide blebs and reequilibration of pyrrhotite metal/sulfur ratios (0.96–0.98) toward the low oxygen fugacity conditions indicated by Fe-Ti oxides hosted in fine-grained materials. The extreme shock intensity also provided suitable conditions for widespread in situ redistribution of igneous sulfur as micrometric globules concentrated in glassy portions of fine-grained lithologies. These globules exsolved early on quenching, allowing dendritic skeletal Fe-Ti oxide overgrowths to nucleate on sulfides.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2523-2544"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock-induced pervasive remelting of Fe sulfides in the basaltic shergottite Northwest Africa 14672: A benchmark for shock stages S6/S7 on Mars\",\"authors\":\"Jean-Pierre Lorand, Sylvain Pont, Roger H. Hewins, Brigitte Zanda\",\"doi\":\"10.1111/maps.14233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Northwest Africa (NWA) 14672, the most highly shocked Martian meteorite so far, has experienced >50% melting, compatible with peak pressure >~65 Gpa, at a transition stage 6/7. Despite these extreme shock conditions, the meteorite still preserves a population of “large” Fe sulfide blebs from the pre-shock igneous assemblage. These primary blebs preserve characteristics of basaltic shergottites in term of modal abundance, preferential occurrence in interstitial pores along with late-crystallized phases (ilmenite, merrillite), and Ni-free pyrrhotite compositions. Primary sulfides underwent widespread shock-induced remelting, as indicated by perfect spherical morphologies when embedded in fine-grained silicate melt zones and a wealth of mineral/glass/vesicle inclusions. Extensive melting of Fe-sulfides is consistent with the decompression path experienced by NWA 14672 after the peak shock pressure at ~70 GPa. Primary sulfides acted as preferential sites for nucleation of vesicles of all sizes which helped sulfur degassing during decompression, leading to partial resorption of Fe-sulfide blebs and reequilibration of pyrrhotite metal/sulfur ratios (0.96–0.98) toward the low oxygen fugacity conditions indicated by Fe-Ti oxides hosted in fine-grained materials. The extreme shock intensity also provided suitable conditions for widespread in situ redistribution of igneous sulfur as micrometric globules concentrated in glassy portions of fine-grained lithologies. These globules exsolved early on quenching, allowing dendritic skeletal Fe-Ti oxide overgrowths to nucleate on sulfides.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 9\",\"pages\":\"2523-2544\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14233\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14233","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Shock-induced pervasive remelting of Fe sulfides in the basaltic shergottite Northwest Africa 14672: A benchmark for shock stages S6/S7 on Mars
Northwest Africa (NWA) 14672, the most highly shocked Martian meteorite so far, has experienced >50% melting, compatible with peak pressure >~65 Gpa, at a transition stage 6/7. Despite these extreme shock conditions, the meteorite still preserves a population of “large” Fe sulfide blebs from the pre-shock igneous assemblage. These primary blebs preserve characteristics of basaltic shergottites in term of modal abundance, preferential occurrence in interstitial pores along with late-crystallized phases (ilmenite, merrillite), and Ni-free pyrrhotite compositions. Primary sulfides underwent widespread shock-induced remelting, as indicated by perfect spherical morphologies when embedded in fine-grained silicate melt zones and a wealth of mineral/glass/vesicle inclusions. Extensive melting of Fe-sulfides is consistent with the decompression path experienced by NWA 14672 after the peak shock pressure at ~70 GPa. Primary sulfides acted as preferential sites for nucleation of vesicles of all sizes which helped sulfur degassing during decompression, leading to partial resorption of Fe-sulfide blebs and reequilibration of pyrrhotite metal/sulfur ratios (0.96–0.98) toward the low oxygen fugacity conditions indicated by Fe-Ti oxides hosted in fine-grained materials. The extreme shock intensity also provided suitable conditions for widespread in situ redistribution of igneous sulfur as micrometric globules concentrated in glassy portions of fine-grained lithologies. These globules exsolved early on quenching, allowing dendritic skeletal Fe-Ti oxide overgrowths to nucleate on sulfides.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.