Rong Rong, C. Shravage, G. Selva Mary, A. John Blesswin, Gayathri M, A. Catherine Esther Karunya, R. Shibani, A. Sambas
{"title":"利用人工智能驱动的减错技术增强语义视觉密码学,提高二维图像质量和安全性","authors":"Rong Rong, C. Shravage, G. Selva Mary, A. John Blesswin, Gayathri M, A. Catherine Esther Karunya, R. Shibani, A. Sambas","doi":"10.1088/1361-6501/ad5f4f","DOIUrl":null,"url":null,"abstract":"\n Visual Cryptography (VC) has emerged as a vital technique in the information security domain, with the fundamental purpose of securing 2-Dimensional (2D) image content through encryption and facilitating secure communication. While traditional VC has been instrumental in safeguarding data, it often falls short in maintaining image quality and semantic accuracy upon reconstruction. To address these limitations, this research encompasses the development of an Enhanced Semantic Visual Cryptography (ESVC) model, which aims to refine the encryption process while ensuring the semantic integrity of the images. The ESVC model introduces a new approach that merges visual cryptography with artificial intelligence to enhance 2D image encryption and decryption. The novel aspect of this research lies in the integration of AI-driven reinforcement learning to increase the quality of the 2D image by measuring the errors between the original secret image and the reconstructed image. This innovative framework is tailored for the secure transmission of 2D grayscale images, ensuring the preservation of semantic integrity while measuring and minimizing image quality loss. By integrating reinforcement learning algorithms with a measurement of error reduction protocol, the model promises robust encryption capabilities with enhanced resilience against a plethora of cyber threats, thereby elevating the standard for secure image communication. Empirical evaluation of the ESVC model yields promising results, with the Peak Signal-to-Noise Ratio (PSNR) of reconstructed images achieving impressive values between +39 and +42 decibels (dB). These findings underscore the ESVC model's capability to produce high-fidelity decrypted images, significantly surpassing traditional VC methods in both security and image quality. The research findings illuminate the potential of merging AI with visual cryptography to achieve a harmonious balance between computational efficiency and encryption strength, marking a significant advancement in the domain of visual data protection.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Semantic Visual Cryptography with AI-Driven Error Reduction for Improved two-dimensional Image Quality and Security\",\"authors\":\"Rong Rong, C. Shravage, G. Selva Mary, A. John Blesswin, Gayathri M, A. Catherine Esther Karunya, R. Shibani, A. Sambas\",\"doi\":\"10.1088/1361-6501/ad5f4f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Visual Cryptography (VC) has emerged as a vital technique in the information security domain, with the fundamental purpose of securing 2-Dimensional (2D) image content through encryption and facilitating secure communication. While traditional VC has been instrumental in safeguarding data, it often falls short in maintaining image quality and semantic accuracy upon reconstruction. To address these limitations, this research encompasses the development of an Enhanced Semantic Visual Cryptography (ESVC) model, which aims to refine the encryption process while ensuring the semantic integrity of the images. The ESVC model introduces a new approach that merges visual cryptography with artificial intelligence to enhance 2D image encryption and decryption. The novel aspect of this research lies in the integration of AI-driven reinforcement learning to increase the quality of the 2D image by measuring the errors between the original secret image and the reconstructed image. This innovative framework is tailored for the secure transmission of 2D grayscale images, ensuring the preservation of semantic integrity while measuring and minimizing image quality loss. By integrating reinforcement learning algorithms with a measurement of error reduction protocol, the model promises robust encryption capabilities with enhanced resilience against a plethora of cyber threats, thereby elevating the standard for secure image communication. Empirical evaluation of the ESVC model yields promising results, with the Peak Signal-to-Noise Ratio (PSNR) of reconstructed images achieving impressive values between +39 and +42 decibels (dB). These findings underscore the ESVC model's capability to produce high-fidelity decrypted images, significantly surpassing traditional VC methods in both security and image quality. The research findings illuminate the potential of merging AI with visual cryptography to achieve a harmonious balance between computational efficiency and encryption strength, marking a significant advancement in the domain of visual data protection.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad5f4f\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad5f4f","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Semantic Visual Cryptography with AI-Driven Error Reduction for Improved two-dimensional Image Quality and Security
Visual Cryptography (VC) has emerged as a vital technique in the information security domain, with the fundamental purpose of securing 2-Dimensional (2D) image content through encryption and facilitating secure communication. While traditional VC has been instrumental in safeguarding data, it often falls short in maintaining image quality and semantic accuracy upon reconstruction. To address these limitations, this research encompasses the development of an Enhanced Semantic Visual Cryptography (ESVC) model, which aims to refine the encryption process while ensuring the semantic integrity of the images. The ESVC model introduces a new approach that merges visual cryptography with artificial intelligence to enhance 2D image encryption and decryption. The novel aspect of this research lies in the integration of AI-driven reinforcement learning to increase the quality of the 2D image by measuring the errors between the original secret image and the reconstructed image. This innovative framework is tailored for the secure transmission of 2D grayscale images, ensuring the preservation of semantic integrity while measuring and minimizing image quality loss. By integrating reinforcement learning algorithms with a measurement of error reduction protocol, the model promises robust encryption capabilities with enhanced resilience against a plethora of cyber threats, thereby elevating the standard for secure image communication. Empirical evaluation of the ESVC model yields promising results, with the Peak Signal-to-Noise Ratio (PSNR) of reconstructed images achieving impressive values between +39 and +42 decibels (dB). These findings underscore the ESVC model's capability to produce high-fidelity decrypted images, significantly surpassing traditional VC methods in both security and image quality. The research findings illuminate the potential of merging AI with visual cryptography to achieve a harmonious balance between computational efficiency and encryption strength, marking a significant advancement in the domain of visual data protection.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.