飞机铆接板结构残余应力的三维表征

Yonggang Kang, Huantian Xiao, Zihao Wang, Guomao Li, Yonggang Chen
{"title":"飞机铆接板结构残余应力的三维表征","authors":"Yonggang Kang, Huantian Xiao, Zihao Wang, Guomao Li, Yonggang Chen","doi":"10.3390/aerospace11070552","DOIUrl":null,"url":null,"abstract":"The residual stress field induced by interference-fit riveting in aircraft panel structures significantly affects the fatigue performance around the rivet holes. Common residual stress analytical models often overlook the non-uniformity of interference between the rivet and the hole, which impacts the applicability of these models. Addressing this issue, an analytical model of residual stress around the rivet hole is proposed for a typical single-riveted structure based on the thick-walled cylinder theory and Lame’s equations, considering the non-uniform interference along the axis of the rivet hole. This novel model is then extended to multi-riveted structures in fuselage panels. Using vector synthesis, analytical models for single-row double-rivets and double-row quadruple-rivets configurations were derived. The established analytical models provide a three-dimensional characterization of the residual stress field in typical riveted structures. Finally, the accuracy of the model is verified through X-ray diffraction experiments and FEM simulation results.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":" 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Characterization of Residual Stress in Aircraft Riveted Panel Structures\",\"authors\":\"Yonggang Kang, Huantian Xiao, Zihao Wang, Guomao Li, Yonggang Chen\",\"doi\":\"10.3390/aerospace11070552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The residual stress field induced by interference-fit riveting in aircraft panel structures significantly affects the fatigue performance around the rivet holes. Common residual stress analytical models often overlook the non-uniformity of interference between the rivet and the hole, which impacts the applicability of these models. Addressing this issue, an analytical model of residual stress around the rivet hole is proposed for a typical single-riveted structure based on the thick-walled cylinder theory and Lame’s equations, considering the non-uniform interference along the axis of the rivet hole. This novel model is then extended to multi-riveted structures in fuselage panels. Using vector synthesis, analytical models for single-row double-rivets and double-row quadruple-rivets configurations were derived. The established analytical models provide a three-dimensional characterization of the residual stress field in typical riveted structures. Finally, the accuracy of the model is verified through X-ray diffraction experiments and FEM simulation results.\",\"PeriodicalId\":505273,\"journal\":{\"name\":\"Aerospace\",\"volume\":\" 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11070552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/aerospace11070552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

飞机面板结构中的过盈配合铆接所引起的残余应力场会严重影响铆钉孔周围的疲劳性能。常见的残余应力分析模型通常会忽略铆钉与孔之间过盈量的不均匀性,这影响了这些模型的适用性。针对这一问题,基于厚壁圆柱体理论和 Lame 方程,考虑到沿铆钉孔轴线的非均匀干涉,为典型的单铆接结构提出了铆钉孔周围残余应力分析模型。然后将这一新颖模型扩展到机身面板中的多铆接结构。通过矢量合成,得出了单排双铆钉和双排四铆钉配置的分析模型。建立的分析模型提供了典型铆接结构中残余应力场的三维特征。最后,通过 X 射线衍射实验和有限元模拟结果验证了模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-Dimensional Characterization of Residual Stress in Aircraft Riveted Panel Structures
The residual stress field induced by interference-fit riveting in aircraft panel structures significantly affects the fatigue performance around the rivet holes. Common residual stress analytical models often overlook the non-uniformity of interference between the rivet and the hole, which impacts the applicability of these models. Addressing this issue, an analytical model of residual stress around the rivet hole is proposed for a typical single-riveted structure based on the thick-walled cylinder theory and Lame’s equations, considering the non-uniform interference along the axis of the rivet hole. This novel model is then extended to multi-riveted structures in fuselage panels. Using vector synthesis, analytical models for single-row double-rivets and double-row quadruple-rivets configurations were derived. The established analytical models provide a three-dimensional characterization of the residual stress field in typical riveted structures. Finally, the accuracy of the model is verified through X-ray diffraction experiments and FEM simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid and Near-Analytical Planning Method for Entry Trajectory under Time and Full-State Constraints Experimental Determination of Pitch Damping Coefficient Using Free Oscillation Method Ground-Based Characterisation of a Compact Instrument for Gamma-ray Burst Detection on a CubeSat Platform Design of Low-Cost Simulation Space Micro Debris Launch Device Design and Implementation of a Land-Air Omnidirectional Mobile Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1