污染物在大气中扩散的数学建模

Jeevan Kafle, K. Adhikari, Eeshwar Prasad Poudel, Ramesh Raj Pant
{"title":"污染物在大气中扩散的数学建模","authors":"Jeevan Kafle, K. Adhikari, Eeshwar Prasad Poudel, Ramesh Raj Pant","doi":"10.3126/jnms.v7i1.67487","DOIUrl":null,"url":null,"abstract":"Air pollution is one of the biggest problems in both developed and developing countries. Mathematical modeling is widely applied to assess how air pollutants impact on human and ecological health. In this paper, the fundamental behavior of the plumes along with stack height and the underlying assumptions of the Gaussian plume model were assessed. Additionally, the equation for advection and diffusion was also developed to analyze the pollutants concentration of brick kilns. Basically, the model considers the height, emission sources, eddy diffusivity, and wind profile as parameters by adopting the fundamental approaches of the model. Interestingly, the results revealed that when the stack height is reduced, pollutants are more prominent whereas when the stack height is increased, the pollutants are less prevalent along the x-axis. There is a close relationship between wind velocity and pollutants dispersion. The model illustrates that stronger winds tend to increase the dispersion of air pollutants; hence, areas with stronger winds typically have lower air pollution concentrations. The insights of this work will directly contribute to environmental sustainability by mitigating pollutants concentration, especially in the core urban areas. Additionally, the work is also applicable for the researcher and academia to select the optimal measurement techniques and ways forward for controlling the pollution level in the atmosphere.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mathematical Modeling of Pollutants Dispersion in the Atmosphere\",\"authors\":\"Jeevan Kafle, K. Adhikari, Eeshwar Prasad Poudel, Ramesh Raj Pant\",\"doi\":\"10.3126/jnms.v7i1.67487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution is one of the biggest problems in both developed and developing countries. Mathematical modeling is widely applied to assess how air pollutants impact on human and ecological health. In this paper, the fundamental behavior of the plumes along with stack height and the underlying assumptions of the Gaussian plume model were assessed. Additionally, the equation for advection and diffusion was also developed to analyze the pollutants concentration of brick kilns. Basically, the model considers the height, emission sources, eddy diffusivity, and wind profile as parameters by adopting the fundamental approaches of the model. Interestingly, the results revealed that when the stack height is reduced, pollutants are more prominent whereas when the stack height is increased, the pollutants are less prevalent along the x-axis. There is a close relationship between wind velocity and pollutants dispersion. The model illustrates that stronger winds tend to increase the dispersion of air pollutants; hence, areas with stronger winds typically have lower air pollution concentrations. The insights of this work will directly contribute to environmental sustainability by mitigating pollutants concentration, especially in the core urban areas. Additionally, the work is also applicable for the researcher and academia to select the optimal measurement techniques and ways forward for controlling the pollution level in the atmosphere.\",\"PeriodicalId\":401623,\"journal\":{\"name\":\"Journal of Nepal Mathematical Society\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nepal Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jnms.v7i1.67487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v7i1.67487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

空气污染是发达国家和发展中国家面临的最大问题之一。数学模型被广泛应用于评估空气污染物对人类和生态健康的影响。本文评估了烟羽的基本行为、烟囱高度和高斯烟羽模型的基本假设。此外,还建立了平流和扩散方程,以分析砖窑的污染物浓度。基本上,该模型采用模型的基本方法,将高度、排放源、涡流扩散率和风廓线作为参数。有趣的是,结果显示,当烟囱高度降低时,污染物更加突出,而当烟囱高度增加时,沿 x 轴的污染物则减少。风速与污染物扩散之间存在密切关系。该模型表明,风力越强,空气污染物的扩散量越大;因此,风力越强的地区空气污染浓度通常越低。这项工作的见解将通过降低污染物浓度,特别是城市核心区域的污染物浓度,直接促进环境的可持续发展。此外,这项工作也适用于研究人员和学术界选择最佳测量技术和控制大气污染水平的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical Modeling of Pollutants Dispersion in the Atmosphere
Air pollution is one of the biggest problems in both developed and developing countries. Mathematical modeling is widely applied to assess how air pollutants impact on human and ecological health. In this paper, the fundamental behavior of the plumes along with stack height and the underlying assumptions of the Gaussian plume model were assessed. Additionally, the equation for advection and diffusion was also developed to analyze the pollutants concentration of brick kilns. Basically, the model considers the height, emission sources, eddy diffusivity, and wind profile as parameters by adopting the fundamental approaches of the model. Interestingly, the results revealed that when the stack height is reduced, pollutants are more prominent whereas when the stack height is increased, the pollutants are less prevalent along the x-axis. There is a close relationship between wind velocity and pollutants dispersion. The model illustrates that stronger winds tend to increase the dispersion of air pollutants; hence, areas with stronger winds typically have lower air pollution concentrations. The insights of this work will directly contribute to environmental sustainability by mitigating pollutants concentration, especially in the core urban areas. Additionally, the work is also applicable for the researcher and academia to select the optimal measurement techniques and ways forward for controlling the pollution level in the atmosphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transmission Dynamics of Dengue Disease in the Rupandehi District of Nepal Delta Power Transformation: A New Family of Probability Distributions Mathematical Modeling of Pollutants Dispersion in the Atmosphere On Certain Statistical Convergence Criteria for Martingale Sequences via Deferred Ces`aro Mean with Some Applications Tandem Queue and Its Applications in the Production of Bi-layer Tablets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1