双相磷酸钙掺入藻酸盐基质的影响

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiale Plastice Pub Date : 2024-07-03 DOI:10.37358/mp.24.2.5716
Alexandru Pahomi, I. Bradu, D. Neidoni, Gheorghe Ilia
{"title":"双相磷酸钙掺入藻酸盐基质的影响","authors":"Alexandru Pahomi, I. Bradu, D. Neidoni, Gheorghe Ilia","doi":"10.37358/mp.24.2.5716","DOIUrl":null,"url":null,"abstract":"\nBiphasic calcium phosphate (BCP), containing β-tricalcium phosphate and hydroxyapatite, was synthesized by co-precipitation method to obtain a biomimetic artificial bone-like composite using calcium nitrate tetrahydrate [Ca(NO3)∙4H2O] as calcium precursor and ammonium dihydrogen phosphate (NH4H2PO4) as phosphorous precursor, maintaining Ca/P ratio of 1.67. The synthesized biphasic calcium phosphate mixture was dispersed in a sodium alginate (Alg) matrix dissolved in distilled water and lyophilized. The chemical structure, possible interactions between components and morphology of the obtained powder and scaffolds were studied through Fourier transform infrared (FT- IR) spectroscopy, X-ray diffraction (XRD) thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) in order to observe the interactions between BCP and the polymer. The particle size of the powder was also analyzed using the dynamic light scattering (DLS) analysis. Calcined powder had a particle size of 1.8 �m. In addition to the low crystalline hydroxyapatite (HA), as the main phase in the dried samples, β-tricalcium phosphate (β-TCP) was formed after the thermal treatment of 1000˚C as shown by XRD and FT-IR. The obtained composite material presented a highly porous microstructure with interconnected layers where the BCP particles were well dispersed. The micro-structure of the scaffolds was influenced with the change in pore dimensions and rearrangement of the layers due to the incorporation of the BCP particles and by the treatment of the scaffolds with CaCl2.\n","PeriodicalId":18360,"journal":{"name":"Materiale Plastice","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Biphasic Calcium Phosphate Incorporation Into Alginate Matrices\",\"authors\":\"Alexandru Pahomi, I. Bradu, D. Neidoni, Gheorghe Ilia\",\"doi\":\"10.37358/mp.24.2.5716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nBiphasic calcium phosphate (BCP), containing β-tricalcium phosphate and hydroxyapatite, was synthesized by co-precipitation method to obtain a biomimetic artificial bone-like composite using calcium nitrate tetrahydrate [Ca(NO3)∙4H2O] as calcium precursor and ammonium dihydrogen phosphate (NH4H2PO4) as phosphorous precursor, maintaining Ca/P ratio of 1.67. The synthesized biphasic calcium phosphate mixture was dispersed in a sodium alginate (Alg) matrix dissolved in distilled water and lyophilized. The chemical structure, possible interactions between components and morphology of the obtained powder and scaffolds were studied through Fourier transform infrared (FT- IR) spectroscopy, X-ray diffraction (XRD) thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) in order to observe the interactions between BCP and the polymer. The particle size of the powder was also analyzed using the dynamic light scattering (DLS) analysis. Calcined powder had a particle size of 1.8 �m. In addition to the low crystalline hydroxyapatite (HA), as the main phase in the dried samples, β-tricalcium phosphate (β-TCP) was formed after the thermal treatment of 1000˚C as shown by XRD and FT-IR. The obtained composite material presented a highly porous microstructure with interconnected layers where the BCP particles were well dispersed. The micro-structure of the scaffolds was influenced with the change in pore dimensions and rearrangement of the layers due to the incorporation of the BCP particles and by the treatment of the scaffolds with CaCl2.\\n\",\"PeriodicalId\":18360,\"journal\":{\"name\":\"Materiale Plastice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiale Plastice\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37358/mp.24.2.5716\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiale Plastice","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37358/mp.24.2.5716","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以四水硝酸钙[Ca(NO3)∙4H2O]为钙前体,以磷酸二氢铵(NH4H2PO4)为磷前体,通过共沉淀法合成了含有β-磷酸三钙和羟基磷灰石的双相磷酸钙(BCP),钙磷比保持在1.67。合成的双相磷酸钙混合物被分散在溶于蒸馏水的海藻酸钠(Alg)基质中并冻干。通过傅立叶变换红外光谱(FT- IR)、X 射线衍射(XRD)、热重分析(TGA)和扫描电子显微镜(SEM)研究了所获粉末和支架的化学结构、各组分之间可能存在的相互作用以及形态,以观察 BCP 与聚合物之间的相互作用。此外,还利用动态光散射(DLS)分析法对粉末的粒度进行了分析。煅烧粉末的粒径为 1.8 厘米。XRD 和傅立叶变换红外光谱显示,干燥样品中的主要相除了低结晶度的羟基磷灰石(HA)外,还在 1000˚C 热处理后形成了β-磷酸三钙(β-TCP)。所获得的复合材料呈现出高度多孔的微观结构,各层之间相互连接,其中 BCP 颗粒分散良好。由于加入了 BCP 颗粒以及用 CaCl2 对支架进行处理,支架的微观结构随着孔隙尺寸的变化和层的重新排列而受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Biphasic Calcium Phosphate Incorporation Into Alginate Matrices
Biphasic calcium phosphate (BCP), containing β-tricalcium phosphate and hydroxyapatite, was synthesized by co-precipitation method to obtain a biomimetic artificial bone-like composite using calcium nitrate tetrahydrate [Ca(NO3)∙4H2O] as calcium precursor and ammonium dihydrogen phosphate (NH4H2PO4) as phosphorous precursor, maintaining Ca/P ratio of 1.67. The synthesized biphasic calcium phosphate mixture was dispersed in a sodium alginate (Alg) matrix dissolved in distilled water and lyophilized. The chemical structure, possible interactions between components and morphology of the obtained powder and scaffolds were studied through Fourier transform infrared (FT- IR) spectroscopy, X-ray diffraction (XRD) thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) in order to observe the interactions between BCP and the polymer. The particle size of the powder was also analyzed using the dynamic light scattering (DLS) analysis. Calcined powder had a particle size of 1.8 �m. In addition to the low crystalline hydroxyapatite (HA), as the main phase in the dried samples, β-tricalcium phosphate (β-TCP) was formed after the thermal treatment of 1000˚C as shown by XRD and FT-IR. The obtained composite material presented a highly porous microstructure with interconnected layers where the BCP particles were well dispersed. The micro-structure of the scaffolds was influenced with the change in pore dimensions and rearrangement of the layers due to the incorporation of the BCP particles and by the treatment of the scaffolds with CaCl2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiale Plastice
Materiale Plastice MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
25.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Materiale Plastice, abbreviated as Mater. Plast., publishes original scientific papers or guest reviews on topics of great interest. The Journal does not publish memos, technical reports or non-original papers (that are a compiling of literature data) or papers that have been already published in other national or foreign Journal.
期刊最新文献
Experimental Analysis of Hyperelastic Materials Using the Vibration Method Impact of Aligned Carbon Nanotubes on the Mechanical Properties and Sensing Performance of EVA/CNTs Composites Influence of Biphasic Calcium Phosphate Incorporation Into Alginate Matrices In vitro Comparison of the Efficiency of Celluloid and Metallic Matrices in Proximal Restorations with a Bulk Polymer-based Biomaterial The Influence of the Delamination Location on the Bending Behavior of E-Glass Fiber EWR Flat Plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1