Xilong Zheng, Jinshuo Yan, Yi Wang, Baitao Sun, Peng Li
{"title":"聚氨酯水泥复合材料 (PUC) 的力学性能和耐久性能","authors":"Xilong Zheng, Jinshuo Yan, Yi Wang, Baitao Sun, Peng Li","doi":"10.37358/mp.24.2.5719","DOIUrl":null,"url":null,"abstract":"\nIn order to investigate the mechanical properties of polyurethane cement (PUC) composite materials, axial tensile test, acid and alkali corrosion resistance test, bond test with concrete, and bond test with steel bars were conducted. The axial tensile results show that the tensile strength of PUC material is 31.11MPa, the stress-strain curve for axial tensile behavior of the material is obtained through fitting. To explore the durability of PUC materials, acid-alkali-salt corrosion resistance test is carried out, the results show that the PUC material has good resistance to acid and alkali corrosion. The failure mode of the bond test between PUC material and concrete is internal cohesion failure of concrete material, indicating good bond performance of PUC material. Axial tensile test of PUC material is carried out at different temperatures (-40℃~60℃). When subjected to temperatures between 40�C and 60�C, the strength of materials does not deteriorate. However, it is noteworthy that the material�s ability to withstand tensile strain significantly increases as temperatures rise to 60�C. The bonding strength between PUC material and steel bar increases with an increase in protective layer thickness, and at a thickness of 70 mm, the maximum bond stress is achieved at 16.38 MPa. On the other hand, the strength of the bond reduces as the anchorage length increases. Smooth round bars demonstrate a significantly lower bond strength compared to deformed bars, as their maximum bond strength is at approximately 47.4% of that of the deformed bars under the same conditions.\n","PeriodicalId":18360,"journal":{"name":"Materiale Plastice","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanics and Durability of Polyurethane Cement Composite (PUC) Material\",\"authors\":\"Xilong Zheng, Jinshuo Yan, Yi Wang, Baitao Sun, Peng Li\",\"doi\":\"10.37358/mp.24.2.5719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nIn order to investigate the mechanical properties of polyurethane cement (PUC) composite materials, axial tensile test, acid and alkali corrosion resistance test, bond test with concrete, and bond test with steel bars were conducted. The axial tensile results show that the tensile strength of PUC material is 31.11MPa, the stress-strain curve for axial tensile behavior of the material is obtained through fitting. To explore the durability of PUC materials, acid-alkali-salt corrosion resistance test is carried out, the results show that the PUC material has good resistance to acid and alkali corrosion. The failure mode of the bond test between PUC material and concrete is internal cohesion failure of concrete material, indicating good bond performance of PUC material. Axial tensile test of PUC material is carried out at different temperatures (-40℃~60℃). When subjected to temperatures between 40�C and 60�C, the strength of materials does not deteriorate. However, it is noteworthy that the material�s ability to withstand tensile strain significantly increases as temperatures rise to 60�C. The bonding strength between PUC material and steel bar increases with an increase in protective layer thickness, and at a thickness of 70 mm, the maximum bond stress is achieved at 16.38 MPa. On the other hand, the strength of the bond reduces as the anchorage length increases. Smooth round bars demonstrate a significantly lower bond strength compared to deformed bars, as their maximum bond strength is at approximately 47.4% of that of the deformed bars under the same conditions.\\n\",\"PeriodicalId\":18360,\"journal\":{\"name\":\"Materiale Plastice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiale Plastice\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37358/mp.24.2.5719\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiale Plastice","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37358/mp.24.2.5719","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanics and Durability of Polyurethane Cement Composite (PUC) Material
In order to investigate the mechanical properties of polyurethane cement (PUC) composite materials, axial tensile test, acid and alkali corrosion resistance test, bond test with concrete, and bond test with steel bars were conducted. The axial tensile results show that the tensile strength of PUC material is 31.11MPa, the stress-strain curve for axial tensile behavior of the material is obtained through fitting. To explore the durability of PUC materials, acid-alkali-salt corrosion resistance test is carried out, the results show that the PUC material has good resistance to acid and alkali corrosion. The failure mode of the bond test between PUC material and concrete is internal cohesion failure of concrete material, indicating good bond performance of PUC material. Axial tensile test of PUC material is carried out at different temperatures (-40℃~60℃). When subjected to temperatures between 40�C and 60�C, the strength of materials does not deteriorate. However, it is noteworthy that the material�s ability to withstand tensile strain significantly increases as temperatures rise to 60�C. The bonding strength between PUC material and steel bar increases with an increase in protective layer thickness, and at a thickness of 70 mm, the maximum bond stress is achieved at 16.38 MPa. On the other hand, the strength of the bond reduces as the anchorage length increases. Smooth round bars demonstrate a significantly lower bond strength compared to deformed bars, as their maximum bond strength is at approximately 47.4% of that of the deformed bars under the same conditions.
期刊介绍:
Materiale Plastice, abbreviated as Mater. Plast., publishes original scientific papers or guest reviews on topics of great interest.
The Journal does not publish memos, technical reports or non-original papers (that are a compiling of literature data) or papers that have been already published in other national or foreign Journal.