电化学应用中的离子液体及其与纳米颗粒的复合材料综述

IF 3.1 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Inorganics Pub Date : 2024-07-03 DOI:10.3390/inorganics12070186
J. Pereira, Reinaldo Souza, Ana S. Moita
{"title":"电化学应用中的离子液体及其与纳米颗粒的复合材料综述","authors":"J. Pereira, Reinaldo Souza, Ana S. Moita","doi":"10.3390/inorganics12070186","DOIUrl":null,"url":null,"abstract":"The current study focuses on reviewing the actual progress of the use of ionic liquids and derivatives in several electrochemical application. Ionic liquids can be prepared at room temperature conditions and by including a solution that can be a salt in water, or a base or acid, and are composed of organic cations and many charge-delocalized organic or inorganic anions. The electrochemical properties, including the ionic and electronic conductivities of these innovative fluids and hybrids, are addressed in depth, together with their key influencing parameters including type, fraction, functionalization of the nanoparticles, and operating temperature, as well as the incorporation of surfactants or additives. Also, the present review assesses the recent applications of ionic liquids and corresponding hybrids with the addition of nanoparticles in diverse electrochemical equipment and processes, together with a critical evaluation of the related feasibility concerns in different applications. Those ranging from the metal-ion batteries, in which ionic liquids possess a prominent role as electrolytes and reference electrodes passing through the dye of sensitized solar cells and fuel cells, to finishing processes like the ones related with low-grade heat harvesting and supercapacitors. Moreover, the overview of the scientific articles on the theme resulted in the comparatively brief examination of the benefits closely linked with the use of ionic fluids and corresponding hybrids, such as improved ionic conductivity, thermal and electrochemical stabilities, and tunability, in comparison with the traditional solvents, electrolytes, and electrodes. Finally, this work analyzes the fundamental limitations of such novel fluids such as their corrosivity potential, elevated dynamic viscosity, and leakage risk, and highlights the essential prospects for the research and exploration of ionic liquids and derivatives in various electrochemical devices and procedures.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Ionic Liquids and Their Composites with Nanoparticles for Electrochemical Applications\",\"authors\":\"J. Pereira, Reinaldo Souza, Ana S. Moita\",\"doi\":\"10.3390/inorganics12070186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study focuses on reviewing the actual progress of the use of ionic liquids and derivatives in several electrochemical application. Ionic liquids can be prepared at room temperature conditions and by including a solution that can be a salt in water, or a base or acid, and are composed of organic cations and many charge-delocalized organic or inorganic anions. The electrochemical properties, including the ionic and electronic conductivities of these innovative fluids and hybrids, are addressed in depth, together with their key influencing parameters including type, fraction, functionalization of the nanoparticles, and operating temperature, as well as the incorporation of surfactants or additives. Also, the present review assesses the recent applications of ionic liquids and corresponding hybrids with the addition of nanoparticles in diverse electrochemical equipment and processes, together with a critical evaluation of the related feasibility concerns in different applications. Those ranging from the metal-ion batteries, in which ionic liquids possess a prominent role as electrolytes and reference electrodes passing through the dye of sensitized solar cells and fuel cells, to finishing processes like the ones related with low-grade heat harvesting and supercapacitors. Moreover, the overview of the scientific articles on the theme resulted in the comparatively brief examination of the benefits closely linked with the use of ionic fluids and corresponding hybrids, such as improved ionic conductivity, thermal and electrochemical stabilities, and tunability, in comparison with the traditional solvents, electrolytes, and electrodes. Finally, this work analyzes the fundamental limitations of such novel fluids such as their corrosivity potential, elevated dynamic viscosity, and leakage risk, and highlights the essential prospects for the research and exploration of ionic liquids and derivatives in various electrochemical devices and procedures.\",\"PeriodicalId\":13572,\"journal\":{\"name\":\"Inorganics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics12070186\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12070186","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究重点是回顾离子液体及其衍生物在多种电化学应用中的实际应用进展。离子液体可在室温条件下通过加入溶液制备,溶液可以是水中的盐,也可以是碱或酸,由有机阳离子和许多电荷定位的有机或无机阴离子组成。本综述深入探讨了这些创新液体和混合液的电化学特性(包括离子导电率和电子导电率)及其关键影响参数,包括纳米粒子的类型、组分、功能化和工作温度,以及表面活性剂或添加剂的加入。此外,本综述还评估了离子液体和添加了纳米粒子的相应混合液在各种电化学设备和工艺中的最新应用,并对不同应用中的相关可行性问题进行了批判性评估。从离子液体作为电解质和参比电极在敏化太阳能电池和燃料电池中发挥重要作用的金属离子电池,到与低品位热量收集和超级电容器相关的精加工工艺,不一而足。此外,通过对有关这一主题的科学文章进行综述,还对与使用离子液体和相应混合液密切相关的优点进行了比较简要的研究,如与传统溶剂、电解质和电极相比,离子液体和相应混合液具有更好的离子传导性、热稳定性、电化学稳定性和可调性。最后,本研究分析了这类新型液体的基本局限性,如潜在的腐蚀性、较高的动态粘度和泄漏风险,并强调了离子液体及其衍生物在各种电化学装置和程序中的重要研究和探索前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Ionic Liquids and Their Composites with Nanoparticles for Electrochemical Applications
The current study focuses on reviewing the actual progress of the use of ionic liquids and derivatives in several electrochemical application. Ionic liquids can be prepared at room temperature conditions and by including a solution that can be a salt in water, or a base or acid, and are composed of organic cations and many charge-delocalized organic or inorganic anions. The electrochemical properties, including the ionic and electronic conductivities of these innovative fluids and hybrids, are addressed in depth, together with their key influencing parameters including type, fraction, functionalization of the nanoparticles, and operating temperature, as well as the incorporation of surfactants or additives. Also, the present review assesses the recent applications of ionic liquids and corresponding hybrids with the addition of nanoparticles in diverse electrochemical equipment and processes, together with a critical evaluation of the related feasibility concerns in different applications. Those ranging from the metal-ion batteries, in which ionic liquids possess a prominent role as electrolytes and reference electrodes passing through the dye of sensitized solar cells and fuel cells, to finishing processes like the ones related with low-grade heat harvesting and supercapacitors. Moreover, the overview of the scientific articles on the theme resulted in the comparatively brief examination of the benefits closely linked with the use of ionic fluids and corresponding hybrids, such as improved ionic conductivity, thermal and electrochemical stabilities, and tunability, in comparison with the traditional solvents, electrolytes, and electrodes. Finally, this work analyzes the fundamental limitations of such novel fluids such as their corrosivity potential, elevated dynamic viscosity, and leakage risk, and highlights the essential prospects for the research and exploration of ionic liquids and derivatives in various electrochemical devices and procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganics
Inorganics Chemistry-Inorganic Chemistry
CiteScore
2.80
自引率
10.30%
发文量
193
审稿时长
6 weeks
期刊介绍: Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD
期刊最新文献
Iron–Sulfur Clusters: Assembly and Biological Roles Improving Charge Transport in Perovskite Solar Cells Using Solvent Additive Technique 2,1,3-Benzoselenadiazole as Mono- and Bidentate N-Donor for Heteroleptic Cu(I) Complexes: Synthesis, Characterization and Photophysical Properties Electrochemically Active Copper Complexes with Pyridine-Alkoxide Ligands Exploring the Anti-Corrosion, Photocatalytic, and Adsorptive Functionalities of Biogenically Synthesized Zinc Oxide Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1