Chenyan Tan, Zijun Chen, Ailin Liao, Xintian Zeng, Jinchao Cao
{"title":"基于 RTK 模式、飞行高度和 GCP 数量的无人机航空摄影测量精度分析","authors":"Chenyan Tan, Zijun Chen, Ailin Liao, Xintian Zeng, Jinchao Cao","doi":"10.1088/1361-6501/ad5dd7","DOIUrl":null,"url":null,"abstract":"\n The optimization of an unmanned aerial vehicle (UAV) aerial photogrammetry scheme is crucial for achieving higher precision mapping results. Three representative factors, namely the real-time kinematic (RTK) mode, flight altitude, and the number of ground control points (GCPs) were selected to analyze their impact on UAV aerial photogrammetry accuracy. Four flight altitude tests were conducted separately in two RTK modes, and five GCP layout schemes were designed. Based on this, the root mean square error (RMSE) values of 40 aerial photogrammetric results were analyzed. The results showed a significant correlation between flight altitude and resolution of the UAV aerial photogrammetric results. Further, conversion formulas between actual image resolution and flight altitude for different GCP values were also derived in RTK and non-RTK modes. In the case of precise positioning, the horizontal and vertical accuracy of the aerial photogrammetric image decreased with increasing flight altitude. Under the same flight altitude, the addition or no addition of GCPs, including changes in GCP numbers, had no significant effect on improving the accuracy of aerial photogrammetry in RTK mode. However, in non-RTK mode, the number of GCPs significantly affected accuracy. The horizontal and vertical RMSE values decreased rapidly with the increase in GCP numbers and then stabilized. However, regardless of whether RTK was activated, an excessive number of GCPs was not conducive to improving the accuracy of aerial photogrammetric results. The mapping accuracy of UAVs in RTK mode without GCPs was equivalent to that in non-RTK mode with GCPs. Therefore, when using RTK-UAVs, deploying GCPs is unnecessary under suitable circumstances. Finally, practical suggestions for optimizing the UAV aerial photogrammetry scheme are provided as a reference for related applications.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy analysis of UAV aerial photogrammetry based on RTK mode, flight altitude, and number of GCPs\",\"authors\":\"Chenyan Tan, Zijun Chen, Ailin Liao, Xintian Zeng, Jinchao Cao\",\"doi\":\"10.1088/1361-6501/ad5dd7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The optimization of an unmanned aerial vehicle (UAV) aerial photogrammetry scheme is crucial for achieving higher precision mapping results. Three representative factors, namely the real-time kinematic (RTK) mode, flight altitude, and the number of ground control points (GCPs) were selected to analyze their impact on UAV aerial photogrammetry accuracy. Four flight altitude tests were conducted separately in two RTK modes, and five GCP layout schemes were designed. Based on this, the root mean square error (RMSE) values of 40 aerial photogrammetric results were analyzed. The results showed a significant correlation between flight altitude and resolution of the UAV aerial photogrammetric results. Further, conversion formulas between actual image resolution and flight altitude for different GCP values were also derived in RTK and non-RTK modes. In the case of precise positioning, the horizontal and vertical accuracy of the aerial photogrammetric image decreased with increasing flight altitude. Under the same flight altitude, the addition or no addition of GCPs, including changes in GCP numbers, had no significant effect on improving the accuracy of aerial photogrammetry in RTK mode. However, in non-RTK mode, the number of GCPs significantly affected accuracy. The horizontal and vertical RMSE values decreased rapidly with the increase in GCP numbers and then stabilized. However, regardless of whether RTK was activated, an excessive number of GCPs was not conducive to improving the accuracy of aerial photogrammetric results. The mapping accuracy of UAVs in RTK mode without GCPs was equivalent to that in non-RTK mode with GCPs. Therefore, when using RTK-UAVs, deploying GCPs is unnecessary under suitable circumstances. Finally, practical suggestions for optimizing the UAV aerial photogrammetry scheme are provided as a reference for related applications.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad5dd7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad5dd7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Accuracy analysis of UAV aerial photogrammetry based on RTK mode, flight altitude, and number of GCPs
The optimization of an unmanned aerial vehicle (UAV) aerial photogrammetry scheme is crucial for achieving higher precision mapping results. Three representative factors, namely the real-time kinematic (RTK) mode, flight altitude, and the number of ground control points (GCPs) were selected to analyze their impact on UAV aerial photogrammetry accuracy. Four flight altitude tests were conducted separately in two RTK modes, and five GCP layout schemes were designed. Based on this, the root mean square error (RMSE) values of 40 aerial photogrammetric results were analyzed. The results showed a significant correlation between flight altitude and resolution of the UAV aerial photogrammetric results. Further, conversion formulas between actual image resolution and flight altitude for different GCP values were also derived in RTK and non-RTK modes. In the case of precise positioning, the horizontal and vertical accuracy of the aerial photogrammetric image decreased with increasing flight altitude. Under the same flight altitude, the addition or no addition of GCPs, including changes in GCP numbers, had no significant effect on improving the accuracy of aerial photogrammetry in RTK mode. However, in non-RTK mode, the number of GCPs significantly affected accuracy. The horizontal and vertical RMSE values decreased rapidly with the increase in GCP numbers and then stabilized. However, regardless of whether RTK was activated, an excessive number of GCPs was not conducive to improving the accuracy of aerial photogrammetric results. The mapping accuracy of UAVs in RTK mode without GCPs was equivalent to that in non-RTK mode with GCPs. Therefore, when using RTK-UAVs, deploying GCPs is unnecessary under suitable circumstances. Finally, practical suggestions for optimizing the UAV aerial photogrammetry scheme are provided as a reference for related applications.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.