估算 Java 应用程序规模的数学模型

О. С. Орєхов, Т. А. Фаріонова
{"title":"估算 Java 应用程序规模的数学模型","authors":"О. С. Орєхов, Т. А. Фаріонова","doi":"10.35546/kntu2078-4481.2024.2.28","DOIUrl":null,"url":null,"abstract":"У статті розглядається застосування математичних моделей для оцінювання розміру Java-застосунків. Мова програмування Java є однією з найбільш поширених у світі та широко використовується в розробці різноманітних програмних проєктів. Оцінювання розміру Java-застосунку є актуальною задачею, яка невідʼємно повʼязана з життєвим циклом розробки програмного забезпечення на ранніх стадіях проєктування. Метою роботи є підвищення достовірності оцінювання кількості рядків коду Java-застосунків на ранніх стадіях розробки програмних проєктів за метриками діаграми класів шляхом побудови нелінійних регресійних моделей. Об’єктом дослідження є процес оцінювання розміру Java-застосунків з відкритим кодом. Предметом дослідження є математичні моделі для оцінювання розміру Java-застосунків. Для досягнення поставленої мети було зібрано 2 вибірки метрик Java-застосунків із відкритим програмних кодом – нвчальна, розміром 286, та тестова, розміром 285 точок даних, проведено аналіз та порівняння існуючих математичних моделей і рівнянь для оцінювання розміру Java-застосунків на тестовій вибірці. Доведено, що існуючі регресійні рівняння та моделі мають незадовільний рівень якості прогнозування розміру Java-застосунків або не можуть бути застосовані для наведеного набору даних через обмеження регресійних моделей. Із використанням навчальної вибірки, побудовано однофакторні нелінійні регресійні моделі для оцінювання розміру Java-застосунків на основі нормалізуючих перетворення десяткового логарифму, Бокса-Кокса та Джонсона сімейства SB за метрикою кількості класів (CLASS) та двофакторна нелінійна регресійна модель на основі нормалізуючого перетворення десяткового логарифму за метриками кількості класів (CLASS) та загальна кількість видимих методів (VMQ). Отримана двофакторна нелінійна регресійна модель на основі перетворення у вигляді десяткового логарифму має меншу середню величину відносної похибки, вище значення відсотка передбачення для рівня відносної похибки та вище значення коефіцієнту детермінації, що у порівнянні з існуючими моделями дозволяє підвищити достовірність оцінювання кількості рядків коду Java-застосунків.","PeriodicalId":518826,"journal":{"name":"Вісник Херсонського національного технічного університету","volume":"340 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"МАТЕМАТИЧНІ МОДЕЛІ ДЛЯ ОЦІНЮВАННЯ РОЗМІРУ JAVA-ЗАСТОСУНКІВ\",\"authors\":\"О. С. Орєхов, Т. А. Фаріонова\",\"doi\":\"10.35546/kntu2078-4481.2024.2.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"У статті розглядається застосування математичних моделей для оцінювання розміру Java-застосунків. Мова програмування Java є однією з найбільш поширених у світі та широко використовується в розробці різноманітних програмних проєктів. Оцінювання розміру Java-застосунку є актуальною задачею, яка невідʼємно повʼязана з життєвим циклом розробки програмного забезпечення на ранніх стадіях проєктування. Метою роботи є підвищення достовірності оцінювання кількості рядків коду Java-застосунків на ранніх стадіях розробки програмних проєктів за метриками діаграми класів шляхом побудови нелінійних регресійних моделей. Об’єктом дослідження є процес оцінювання розміру Java-застосунків з відкритим кодом. Предметом дослідження є математичні моделі для оцінювання розміру Java-застосунків. Для досягнення поставленої мети було зібрано 2 вибірки метрик Java-застосунків із відкритим програмних кодом – нвчальна, розміром 286, та тестова, розміром 285 точок даних, проведено аналіз та порівняння існуючих математичних моделей і рівнянь для оцінювання розміру Java-застосунків на тестовій вибірці. Доведено, що існуючі регресійні рівняння та моделі мають незадовільний рівень якості прогнозування розміру Java-застосунків або не можуть бути застосовані для наведеного набору даних через обмеження регресійних моделей. Із використанням навчальної вибірки, побудовано однофакторні нелінійні регресійні моделі для оцінювання розміру Java-застосунків на основі нормалізуючих перетворення десяткового логарифму, Бокса-Кокса та Джонсона сімейства SB за метрикою кількості класів (CLASS) та двофакторна нелінійна регресійна модель на основі нормалізуючого перетворення десяткового логарифму за метриками кількості класів (CLASS) та загальна кількість видимих методів (VMQ). Отримана двофакторна нелінійна регресійна модель на основі перетворення у вигляді десяткового логарифму має меншу середню величину відносної похибки, вище значення відсотка передбачення для рівня відносної похибки та вище значення коефіцієнту детермінації, що у порівнянні з існуючими моделями дозволяє підвищити достовірність оцінювання кількості рядків коду Java-застосунків.\",\"PeriodicalId\":518826,\"journal\":{\"name\":\"Вісник Херсонського національного технічного університету\",\"volume\":\"340 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Вісник Херсонського національного технічного університету\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35546/kntu2078-4481.2024.2.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Вісник Херсонського національного технічного університету","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35546/kntu2078-4481.2024.2.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章讨论了使用数学模型估算 Java 应用程序规模的问题。Java 编程语言是世界上最普及的编程语言之一,广泛应用于各种软件项目的开发。估算 Java 应用程序的大小是一项紧迫的任务,它与设计早期阶段的软件开发生命周期密不可分。本研究的目的是通过建立非线性回归模型,提高在软件项目开发早期使用类图指标估算 Java 应用程序代码行数的可靠性。研究对象是确定开源 Java 应用程序规模的过程。研究主题是估算 Java 应用程序规模的数学模型。为实现这一目标,我们收集了两个开源 Java 应用程序指标样本--包含 286 个数据点的训练样本和包含 285 个数据点的测试样本,并分析和比较了在测试样本上估算 Java 应用程序规模的现有数学模型和方程。结果证明,由于回归模型的局限性,现有的回归方程和模型在预测 Java 应用程序规模方面的质量不能令人满意,或者无法应用于给定的数据集。利用训练样本,我们建立了基于十进制对数、Box-Cox 和 SB 系列的 Johnson 的归一化变换(按类数(CLASS)度量)的单因素非线性回归模型,以及基于十进制对数的归一化变换(按类数(CLASS)度量)和可见方法总数(VMQ)度量的双因素非线性回归模型,用于估计 Java 应用程序的大小。与现有模型相比,基于十进制对数形式转换的双因素非线性回归模型具有较低的平均相对误差、较高的相对误差水平预测百分比值和较高的决定系数值,从而提高了估算 Java 应用程序代码行数的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
МАТЕМАТИЧНІ МОДЕЛІ ДЛЯ ОЦІНЮВАННЯ РОЗМІРУ JAVA-ЗАСТОСУНКІВ
У статті розглядається застосування математичних моделей для оцінювання розміру Java-застосунків. Мова програмування Java є однією з найбільш поширених у світі та широко використовується в розробці різноманітних програмних проєктів. Оцінювання розміру Java-застосунку є актуальною задачею, яка невідʼємно повʼязана з життєвим циклом розробки програмного забезпечення на ранніх стадіях проєктування. Метою роботи є підвищення достовірності оцінювання кількості рядків коду Java-застосунків на ранніх стадіях розробки програмних проєктів за метриками діаграми класів шляхом побудови нелінійних регресійних моделей. Об’єктом дослідження є процес оцінювання розміру Java-застосунків з відкритим кодом. Предметом дослідження є математичні моделі для оцінювання розміру Java-застосунків. Для досягнення поставленої мети було зібрано 2 вибірки метрик Java-застосунків із відкритим програмних кодом – нвчальна, розміром 286, та тестова, розміром 285 точок даних, проведено аналіз та порівняння існуючих математичних моделей і рівнянь для оцінювання розміру Java-застосунків на тестовій вибірці. Доведено, що існуючі регресійні рівняння та моделі мають незадовільний рівень якості прогнозування розміру Java-застосунків або не можуть бути застосовані для наведеного набору даних через обмеження регресійних моделей. Із використанням навчальної вибірки, побудовано однофакторні нелінійні регресійні моделі для оцінювання розміру Java-застосунків на основі нормалізуючих перетворення десяткового логарифму, Бокса-Кокса та Джонсона сімейства SB за метрикою кількості класів (CLASS) та двофакторна нелінійна регресійна модель на основі нормалізуючого перетворення десяткового логарифму за метриками кількості класів (CLASS) та загальна кількість видимих методів (VMQ). Отримана двофакторна нелінійна регресійна модель на основі перетворення у вигляді десяткового логарифму має меншу середню величину відносної похибки, вище значення відсотка передбачення для рівня відносної похибки та вище значення коефіцієнту детермінації, що у порівнянні з існуючими моделями дозволяє підвищити достовірність оцінювання кількості рядків коду Java-застосунків.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COMPARISON OF MESSAGE PASSING SYSTEMS IN CONTEXT OF ADAPTIVE LOGGING METHOD МЕТОДИЧНИЙ ПІДХІД ДО ОЦІНЮВАННЯ АДАПТАЦІЙНОГО ПОТЕНЦІАЛУ ЗАБЕЗПЕЧЕННЯ АНТИКРИЗОВОЇ СТІЙКОСТІ ТУРИСТИЧНОГО ПІДПРИЄМСТВА ВІД ПЕТРА І ДО СУЧАСНОЇ РОСІЇ: ІМПЕРСЬКІ ТРАДИЦІЇ ТА ОЗНАКИ ОСОБЛИВОСТІ ФОРМУВАННЯ ЕНЕРГЕТИЧНОЇ АВТОНОМІЇ В УКРАЇНІ УДОСКОНАЛЕННЯ АВТОМАТИЗОВАНОГО ПРОЦЕСУ ВИЗНАЧЕННЯ ДІЛЯНОК ТА МІСЦЬ КОНЦЕНТРАЦІЇ ДОРОЖНЬО-ТРАНСПОРТНИХ ПРИГОД НА ТЕРИТОРІЇ ІВАНО-ФРАНКІВСЬКОЇ МІСЬКОЇ ТЕРИТОРІАЛЬНОЇ ГРОМАДИ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1