利用乳制品废料和红枣废水生产低成本乳酸,以及用于生物应用的生物活性银-聚(乳酸)纳米复合材料

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Bioresources Pub Date : 2024-07-02 DOI:10.15376/biores.19.3.5632-5653
Muthumareeswaran Muthuramamoorthy, A. Aldalbahi, Khwater Mishaal Radi Alanzi, Saravanan Pandiaraj, Ponmurugan Karuppiah, Periyasami Govindasami
{"title":"利用乳制品废料和红枣废水生产低成本乳酸,以及用于生物应用的生物活性银-聚(乳酸)纳米复合材料","authors":"Muthumareeswaran Muthuramamoorthy, A. Aldalbahi, Khwater Mishaal Radi Alanzi, Saravanan Pandiaraj, Ponmurugan Karuppiah, Periyasami Govindasami","doi":"10.15376/biores.19.3.5632-5653","DOIUrl":null,"url":null,"abstract":"L-Lactic acid-producing Lactobacillus lactis and L. plantarum were isolated from date wastes. The fermentation process was optimized using a one-variable-at-a-time approach. Dairy wastewater and wastewater from the date industry were utilized as low-cost culture media to produce lactic acid. The selected two bacterial strains were co-cultured in wastewater medium to produce L-lactic acid and D-lactic acid. Lactic acid production was significantly improved by glucose (carbon source), yeast extract (nitrogen source), initial inoculum level, and polysorbate 80. A central composite design and response surface methodology were used to optimize the variables and their levels to improve lactic acid yield. The supplemented yeast extract, glucose, and polysorbate 80 improved lactic acid. The predicted variables and their levels for maximum lactic acid production were glucose (67.5 g/L), yeast extract (10.28 g/L), and polysorbate 80 (0.48 mL/L). The prepared nanocomposites exhibited antibacterial activity against foodborne bacterial pathogens. The structural properties of the silver-polylactic acid nano compost materials were determined. The characterized compost materials exhibited a peak absorption wavelength of 430 nm. The silver and poly(lactic acid) were characterized using X-ray diffraction analysis and were 30 to 50 nm in size.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of low-cost lactic acid from dairy wastes and dates wastewater and bioactive silver-poly (lactic acid) nanocomposite for biological applications\",\"authors\":\"Muthumareeswaran Muthuramamoorthy, A. Aldalbahi, Khwater Mishaal Radi Alanzi, Saravanan Pandiaraj, Ponmurugan Karuppiah, Periyasami Govindasami\",\"doi\":\"10.15376/biores.19.3.5632-5653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"L-Lactic acid-producing Lactobacillus lactis and L. plantarum were isolated from date wastes. The fermentation process was optimized using a one-variable-at-a-time approach. Dairy wastewater and wastewater from the date industry were utilized as low-cost culture media to produce lactic acid. The selected two bacterial strains were co-cultured in wastewater medium to produce L-lactic acid and D-lactic acid. Lactic acid production was significantly improved by glucose (carbon source), yeast extract (nitrogen source), initial inoculum level, and polysorbate 80. A central composite design and response surface methodology were used to optimize the variables and their levels to improve lactic acid yield. The supplemented yeast extract, glucose, and polysorbate 80 improved lactic acid. The predicted variables and their levels for maximum lactic acid production were glucose (67.5 g/L), yeast extract (10.28 g/L), and polysorbate 80 (0.48 mL/L). The prepared nanocomposites exhibited antibacterial activity against foodborne bacterial pathogens. The structural properties of the silver-polylactic acid nano compost materials were determined. The characterized compost materials exhibited a peak absorption wavelength of 430 nm. The silver and poly(lactic acid) were characterized using X-ray diffraction analysis and were 30 to 50 nm in size.\",\"PeriodicalId\":9172,\"journal\":{\"name\":\"Bioresources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.19.3.5632-5653\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.3.5632-5653","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

从椰枣废料中分离出了产 L-乳酸的乳酸杆菌和植物乳杆菌。采用一次一变量的方法对发酵过程进行了优化。乳制品废水和红枣工业废水被用作生产乳酸的低成本培养基。选定的两种细菌菌株在废水培养基中共同培养,生产 L-乳酸和 D-乳酸。葡萄糖(碳源)、酵母提取物(氮源)、初始接种量和聚山梨醇酯 80 都能显著提高乳酸产量。采用中心复合设计和响应面方法对变量及其水平进行了优化,以提高乳酸产量。添加酵母提取物、葡萄糖和聚山梨醇酯 80 提高了乳酸产量。预测乳酸产量最大的变量及其水平为葡萄糖(67.5 克/升)、酵母提取物(10.28 克/升)和聚山梨醇酯 80(0.48 毫升/升)。制备的纳米复合材料对食源性细菌病原体具有抗菌活性。测定了银-聚乳酸纳米堆肥材料的结构特性。堆肥材料的吸收峰波长为 430 纳米。利用 X 射线衍射分析对银和聚乳酸进行了表征,其尺寸为 30 至 50 纳米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production of low-cost lactic acid from dairy wastes and dates wastewater and bioactive silver-poly (lactic acid) nanocomposite for biological applications
L-Lactic acid-producing Lactobacillus lactis and L. plantarum were isolated from date wastes. The fermentation process was optimized using a one-variable-at-a-time approach. Dairy wastewater and wastewater from the date industry were utilized as low-cost culture media to produce lactic acid. The selected two bacterial strains were co-cultured in wastewater medium to produce L-lactic acid and D-lactic acid. Lactic acid production was significantly improved by glucose (carbon source), yeast extract (nitrogen source), initial inoculum level, and polysorbate 80. A central composite design and response surface methodology were used to optimize the variables and their levels to improve lactic acid yield. The supplemented yeast extract, glucose, and polysorbate 80 improved lactic acid. The predicted variables and their levels for maximum lactic acid production were glucose (67.5 g/L), yeast extract (10.28 g/L), and polysorbate 80 (0.48 mL/L). The prepared nanocomposites exhibited antibacterial activity against foodborne bacterial pathogens. The structural properties of the silver-polylactic acid nano compost materials were determined. The characterized compost materials exhibited a peak absorption wavelength of 430 nm. The silver and poly(lactic acid) were characterized using X-ray diffraction analysis and were 30 to 50 nm in size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresources
Bioresources 工程技术-材料科学:纸与木材
CiteScore
2.90
自引率
13.30%
发文量
397
审稿时长
2.3 months
期刊介绍: The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.
期刊最新文献
Integrating Kansei engineering with hesitant fuzzy quality function deployment for rosewood furniture design Free drying shrinkage performance of Pinus sylvestris L. under different temperature and humidity conditions Biomass analysis of industrial hemp “Felina 32” and the influence of plant height on its quality Optimizing the extraction of Sasa quelpaertensis Nakai to develop natural cosmetics with antioxidant and whitening activities Voxel-based modular architectural design strategy toward autonomous architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1