利用机器学习对水位进行多步提前预测:越南湄公河三角洲比较分析

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY VIETNAM JOURNAL OF EARTH SCIENCES Pub Date : 2024-07-02 DOI:10.15625/2615-9783/21067
Hanh Nguyen Duc, Giang Nguyen Tien, Hoa Nguyen Xuan, Vinh Tran Ngoc, Duy Nguyen Huu
{"title":"利用机器学习对水位进行多步提前预测:越南湄公河三角洲比较分析","authors":"Hanh Nguyen Duc, Giang Nguyen Tien, Hoa Nguyen Xuan, Vinh Tran Ngoc, Duy Nguyen Huu","doi":"10.15625/2615-9783/21067","DOIUrl":null,"url":null,"abstract":"This study evaluates the efficacy of five machine learning algorithms Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), Light Gradient Boosting Machine Regressor (LGBM), and Linear Regression (LR) in predicting water levels in the Vietnamese Mekong Delta's tidal river system, a complex nonlinear hydrological phenomenon. Using daily maximum, minimum, and mean water level data from the Cao Lanh gauging station on the Tien River (2000-2020), models were developed to forecast water levels one, three, five, and seven days in advance. Performance was assessed using Nash-Sutcliffe Efficiency, coefficient of determination, Root Mean Square Error, and Mean Absolute Error. Results indicate that all models performed well, with SVR consistently outperforming others, followed by RF, DT, and LGBM. The study demonstrates the viability of machine learning in water level prediction using solely historical water level data, potentially enhancing flood warning systems, water resource management, and agricultural planning. These findings contribute to the growing knowledge of machine learning applications in hydrology and can inform sustainable water resource management strategies in delta regions.","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-step-ahead prediction of water levels using machine learning: A comparative analysis in the Vietnamese Mekong Delta\",\"authors\":\"Hanh Nguyen Duc, Giang Nguyen Tien, Hoa Nguyen Xuan, Vinh Tran Ngoc, Duy Nguyen Huu\",\"doi\":\"10.15625/2615-9783/21067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates the efficacy of five machine learning algorithms Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), Light Gradient Boosting Machine Regressor (LGBM), and Linear Regression (LR) in predicting water levels in the Vietnamese Mekong Delta's tidal river system, a complex nonlinear hydrological phenomenon. Using daily maximum, minimum, and mean water level data from the Cao Lanh gauging station on the Tien River (2000-2020), models were developed to forecast water levels one, three, five, and seven days in advance. Performance was assessed using Nash-Sutcliffe Efficiency, coefficient of determination, Root Mean Square Error, and Mean Absolute Error. Results indicate that all models performed well, with SVR consistently outperforming others, followed by RF, DT, and LGBM. The study demonstrates the viability of machine learning in water level prediction using solely historical water level data, potentially enhancing flood warning systems, water resource management, and agricultural planning. These findings contribute to the growing knowledge of machine learning applications in hydrology and can inform sustainable water resource management strategies in delta regions.\",\"PeriodicalId\":23639,\"journal\":{\"name\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/2615-9783/21067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2615-9783/21067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了支持向量回归 (SVR)、决策树 (DT)、随机森林 (RF)、轻梯度提升机器回归器 (LGBM) 和线性回归 (LR) 五种机器学习算法在预测越南湄公河三角洲潮汐河流系统水位(一种复杂的非线性水文现象)方面的功效。利用 Tien 河上 Cao Lanh 测量站提供的每日最高、最低和平均水位数据(2000-2020 年),建立了提前 1 天、3 天、5 天和 7 天预测水位的模型。使用纳什-苏克里夫效率、决定系数、均方根误差和平均绝对误差评估了模型的性能。结果表明,所有模型都表现出色,其中 SVR 始终优于其他模型,其次是 RF、DT 和 LGBM。这项研究证明了机器学习在仅利用历史水位数据进行水位预测方面的可行性,有可能增强洪水预警系统、水资源管理和农业规划。这些发现为机器学习在水文领域的应用提供了更多知识,并可为三角洲地区的可持续水资源管理策略提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-step-ahead prediction of water levels using machine learning: A comparative analysis in the Vietnamese Mekong Delta
This study evaluates the efficacy of five machine learning algorithms Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), Light Gradient Boosting Machine Regressor (LGBM), and Linear Regression (LR) in predicting water levels in the Vietnamese Mekong Delta's tidal river system, a complex nonlinear hydrological phenomenon. Using daily maximum, minimum, and mean water level data from the Cao Lanh gauging station on the Tien River (2000-2020), models were developed to forecast water levels one, three, five, and seven days in advance. Performance was assessed using Nash-Sutcliffe Efficiency, coefficient of determination, Root Mean Square Error, and Mean Absolute Error. Results indicate that all models performed well, with SVR consistently outperforming others, followed by RF, DT, and LGBM. The study demonstrates the viability of machine learning in water level prediction using solely historical water level data, potentially enhancing flood warning systems, water resource management, and agricultural planning. These findings contribute to the growing knowledge of machine learning applications in hydrology and can inform sustainable water resource management strategies in delta regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
VIETNAM JOURNAL OF EARTH SCIENCES
VIETNAM JOURNAL OF EARTH SCIENCES GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
20.00%
发文量
0
期刊最新文献
Hybrid approach for permeability prediction in porous media: combining FFT simulations with machine learning Identification of the active faults and seismotectonic zonation of Laos territory Multi-step-ahead prediction of water levels using machine learning: A comparative analysis in the Vietnamese Mekong Delta Temporal and spatial variation in water quality in the Son La hydropower Reservoir, Northwestern Vietnam Application of hybrid modeling to predict California bearing ratio of soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1