Jan Kramer, Michael Rice, Bryan Zavala, Christopher Sharp, James McCarthy, Ben Karrer
{"title":"使用 CDA 和低功率电加热器进行 80 万英里老化后的未来排放情况","authors":"Jan Kramer, Michael Rice, Bryan Zavala, Christopher Sharp, James McCarthy, Ben Karrer","doi":"10.4271/2024-01-3011","DOIUrl":null,"url":null,"abstract":"Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOx regulations on heavy duty vehicles in the United States. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR. The e-heater was capable of providing up to 10 kW, however for the purpose of this project, lower power settings of 2.5 kW and 5 kW were studied in combination with CDA for lowest possible CO2 emissions. Test cycles included the heavy duty FPT (hot and cold), a low load cycle, a beverage cycle, and a stay hot operation. The data found in this study show how the application of a low power e-heater enables an engine with CDA and an aftertreatment system after 800,000 miles aging to meet ultra-low NOx emissions with minimum CO2 penalty.","PeriodicalId":510086,"journal":{"name":"SAE Technical Paper Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future Emissions Following 800,000 Mile Aging Using CDA and a Low Power Electric Heater\",\"authors\":\"Jan Kramer, Michael Rice, Bryan Zavala, Christopher Sharp, James McCarthy, Ben Karrer\",\"doi\":\"10.4271/2024-01-3011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOx regulations on heavy duty vehicles in the United States. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR. The e-heater was capable of providing up to 10 kW, however for the purpose of this project, lower power settings of 2.5 kW and 5 kW were studied in combination with CDA for lowest possible CO2 emissions. Test cycles included the heavy duty FPT (hot and cold), a low load cycle, a beverage cycle, and a stay hot operation. The data found in this study show how the application of a low power e-heater enables an engine with CDA and an aftertreatment system after 800,000 miles aging to meet ultra-low NOx emissions with minimum CO2 penalty.\",\"PeriodicalId\":510086,\"journal\":{\"name\":\"SAE Technical Paper Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE Technical Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2024-01-3011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2024-01-3011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Future Emissions Following 800,000 Mile Aging Using CDA and a Low Power Electric Heater
Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOx regulations on heavy duty vehicles in the United States. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR. The e-heater was capable of providing up to 10 kW, however for the purpose of this project, lower power settings of 2.5 kW and 5 kW were studied in combination with CDA for lowest possible CO2 emissions. Test cycles included the heavy duty FPT (hot and cold), a low load cycle, a beverage cycle, and a stay hot operation. The data found in this study show how the application of a low power e-heater enables an engine with CDA and an aftertreatment system after 800,000 miles aging to meet ultra-low NOx emissions with minimum CO2 penalty.