C.Z. Soh, Z. Chang, J.Y. Sum, S. P. Yeap, P.V Chai, Z. A. Jawad
{"title":"开发齐聚物功能化氧化石墨烯/聚醚砜纳米复合膜并利用不同电荷的溶质进行污垢评估","authors":"C.Z. Soh, Z. Chang, J.Y. Sum, S. P. Yeap, P.V Chai, Z. A. Jawad","doi":"10.1088/1755-1315/1372/1/012030","DOIUrl":null,"url":null,"abstract":"\n This study explores the functionalization of polyethersulfone (PES) ultrafiltration (UF) membranes using zwitterion-functionalized graphene oxide (GO) and assesses their interactions with solutes of different charges, both neutral and anionic. Initially, PES nanocomposite membranes were synthesized, incorporating varying dosages (ranging from 0-1 % (w/w)) of glycine-functionalized graphene oxide (Gly/GO) and diglycine-functionalized graphene oxide (diGly/GO) through a direct blending method. The physicochemical properties, including hydrophilicity, surface morphology, and porosity of these membranes were characterized using sessile-drop contact angle, tabletop scanning electron microscopy (SEM), and gravimetric methods, respectively. Subsequently, the antifouling performance of these synthesized membranes was assessed by exposing them to a solution containing sucrose as a neutral model foulant and humic acid as an anionic foulant. The incorporation of zwitterion-functionalized graphene oxide nanoparticles improved the surface wettability of the nanocomposite membrane, enhancing its resistance to sucrose fouling. This was supported by a reduction in flux declination ratio (e.g., 40.6 % for pristine PES, 29.7 % for 1.0 % (w/w) Gly/GO PES, and 33.1 % for 1.0 % (w/w) diGly/GO PES) and an increase in flux recovery ratio (67.2 % for pristine PES, 79.7 % for 1.0 % (w/w) Gly/GO PES, and 80.0% for 1.0 % (w/w) diGly/GO PES). The improvement in antifouling characteristics is attributed to the formation of a hydration layer on the membrane surface, which inhibits sucrose deposition. However, zwitterion-functionalized PES nanocomposite membranes displayed a higher affinity for anionic humic acid, resulting in a substantial flux decline and a lower flux recovery ratio. Overall, this research provides insights into the roles of surface wettability and the charge interactions between solutes and the membrane surface, both of which are crucial factors in determining fouling severity and the restorability of spent membranes.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"46 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of zwitterion-functionalized graphene oxide/polyethersulfone nanocomposite membrane and fouling evaluation using solutes of varying charges\",\"authors\":\"C.Z. Soh, Z. Chang, J.Y. Sum, S. P. Yeap, P.V Chai, Z. A. Jawad\",\"doi\":\"10.1088/1755-1315/1372/1/012030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study explores the functionalization of polyethersulfone (PES) ultrafiltration (UF) membranes using zwitterion-functionalized graphene oxide (GO) and assesses their interactions with solutes of different charges, both neutral and anionic. Initially, PES nanocomposite membranes were synthesized, incorporating varying dosages (ranging from 0-1 % (w/w)) of glycine-functionalized graphene oxide (Gly/GO) and diglycine-functionalized graphene oxide (diGly/GO) through a direct blending method. The physicochemical properties, including hydrophilicity, surface morphology, and porosity of these membranes were characterized using sessile-drop contact angle, tabletop scanning electron microscopy (SEM), and gravimetric methods, respectively. Subsequently, the antifouling performance of these synthesized membranes was assessed by exposing them to a solution containing sucrose as a neutral model foulant and humic acid as an anionic foulant. The incorporation of zwitterion-functionalized graphene oxide nanoparticles improved the surface wettability of the nanocomposite membrane, enhancing its resistance to sucrose fouling. This was supported by a reduction in flux declination ratio (e.g., 40.6 % for pristine PES, 29.7 % for 1.0 % (w/w) Gly/GO PES, and 33.1 % for 1.0 % (w/w) diGly/GO PES) and an increase in flux recovery ratio (67.2 % for pristine PES, 79.7 % for 1.0 % (w/w) Gly/GO PES, and 80.0% for 1.0 % (w/w) diGly/GO PES). The improvement in antifouling characteristics is attributed to the formation of a hydration layer on the membrane surface, which inhibits sucrose deposition. However, zwitterion-functionalized PES nanocomposite membranes displayed a higher affinity for anionic humic acid, resulting in a substantial flux decline and a lower flux recovery ratio. Overall, this research provides insights into the roles of surface wettability and the charge interactions between solutes and the membrane surface, both of which are crucial factors in determining fouling severity and the restorability of spent membranes.\",\"PeriodicalId\":506254,\"journal\":{\"name\":\"IOP Conference Series: Earth and Environmental Science\",\"volume\":\"46 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Earth and Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1755-1315/1372/1/012030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了使用齐聚物功能化氧化石墨烯(GO)对聚醚砜(PES)超滤膜进行功能化的问题,并评估了它们与不同电荷(包括中性电荷和阴离子电荷)的溶质之间的相互作用。首先,通过直接混合法合成了聚醚砜纳米复合膜,其中加入了不同剂量(0-1%(w/w)不等)的甘氨酸功能化氧化石墨烯(Gly/GO)和二甘氨酸功能化氧化石墨烯(diGly/GO)。采用无梗水滴接触角、台式扫描电子显微镜(SEM)和重量法分别对这些膜的亲水性、表面形貌和孔隙率等理化性质进行了表征。随后,将这些合成膜暴露在含有蔗糖(中性污垢模型)和腐植酸(阴离子污垢)的溶液中,对其防污性能进行了评估。加入齐聚物功能化的氧化石墨烯纳米颗粒改善了纳米复合膜的表面润湿性,提高了其抗蔗糖污垢的能力。通量衰减率的降低(例如,原生石墨烯膜的通量衰减率为 40.6%)证明了这一点、原始 PES 为 40.6%,1.0%(重量比)Gly/GO PES 为 29.7%,1.0%(重量比)diGly/GO PES 为 33.1%),通量恢复比增加(原始 PES 为 67.2%,1.0%(重量比)Gly/GO PES 为 79.7%,1.0%(重量比)diGly/GO PES 为 80.0%)。防污特性的改善归功于膜表面水合层的形成,它抑制了蔗糖的沉积。然而,齐聚物功能化的 PES 纳米复合膜对阴离子腐植酸的亲和力更高,导致通量大幅下降,通量回收率降低。总之,这项研究深入揭示了表面润湿性和溶质与膜表面之间电荷相互作用的作用,这两者都是决定污垢严重程度和废膜可恢复性的关键因素。
Development of zwitterion-functionalized graphene oxide/polyethersulfone nanocomposite membrane and fouling evaluation using solutes of varying charges
This study explores the functionalization of polyethersulfone (PES) ultrafiltration (UF) membranes using zwitterion-functionalized graphene oxide (GO) and assesses their interactions with solutes of different charges, both neutral and anionic. Initially, PES nanocomposite membranes were synthesized, incorporating varying dosages (ranging from 0-1 % (w/w)) of glycine-functionalized graphene oxide (Gly/GO) and diglycine-functionalized graphene oxide (diGly/GO) through a direct blending method. The physicochemical properties, including hydrophilicity, surface morphology, and porosity of these membranes were characterized using sessile-drop contact angle, tabletop scanning electron microscopy (SEM), and gravimetric methods, respectively. Subsequently, the antifouling performance of these synthesized membranes was assessed by exposing them to a solution containing sucrose as a neutral model foulant and humic acid as an anionic foulant. The incorporation of zwitterion-functionalized graphene oxide nanoparticles improved the surface wettability of the nanocomposite membrane, enhancing its resistance to sucrose fouling. This was supported by a reduction in flux declination ratio (e.g., 40.6 % for pristine PES, 29.7 % for 1.0 % (w/w) Gly/GO PES, and 33.1 % for 1.0 % (w/w) diGly/GO PES) and an increase in flux recovery ratio (67.2 % for pristine PES, 79.7 % for 1.0 % (w/w) Gly/GO PES, and 80.0% for 1.0 % (w/w) diGly/GO PES). The improvement in antifouling characteristics is attributed to the formation of a hydration layer on the membrane surface, which inhibits sucrose deposition. However, zwitterion-functionalized PES nanocomposite membranes displayed a higher affinity for anionic humic acid, resulting in a substantial flux decline and a lower flux recovery ratio. Overall, this research provides insights into the roles of surface wettability and the charge interactions between solutes and the membrane surface, both of which are crucial factors in determining fouling severity and the restorability of spent membranes.