{"title":"利用开源工具制作微流控液滴发生器的精确数值原型","authors":"David Gabriel Harispe, Pablo A. Kler","doi":"10.1016/j.compfluid.2024.106366","DOIUrl":null,"url":null,"abstract":"<div><p>Droplet-based microfluidics gained significant attention for its high technological impact in various fields like (bio)analysis and (bio)synthesis. Precise and controlled droplet size is critical, for the encapsulated products, or the yield of chemical reactions. In a broad range of experimental parameters, the understanding of how droplets form, interact and move with accurate predictive models is crucial. In this work, numerical prototypes of droplet generators were made with Basilisk, an open source software for solving partial differential equations on adaptive Cartesian meshes including grid adaptation and scalability for High-Performance Computing (HPC). This research aims to analyze and compare the obtained droplets against existing experimental data. The evaluation involves qualitative and quantitative comparisons, considering various channel geometries, flow rates, and rheological conditions. The validation of the proposed tool in terms of accuracy and computational performance, enable us to offer to the microfluidics community a reliable tool to design and optimize droplet generators.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106366"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate numerical prototypes of microfluidic droplet generators with open source tools\",\"authors\":\"David Gabriel Harispe, Pablo A. Kler\",\"doi\":\"10.1016/j.compfluid.2024.106366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Droplet-based microfluidics gained significant attention for its high technological impact in various fields like (bio)analysis and (bio)synthesis. Precise and controlled droplet size is critical, for the encapsulated products, or the yield of chemical reactions. In a broad range of experimental parameters, the understanding of how droplets form, interact and move with accurate predictive models is crucial. In this work, numerical prototypes of droplet generators were made with Basilisk, an open source software for solving partial differential equations on adaptive Cartesian meshes including grid adaptation and scalability for High-Performance Computing (HPC). This research aims to analyze and compare the obtained droplets against existing experimental data. The evaluation involves qualitative and quantitative comparisons, considering various channel geometries, flow rates, and rheological conditions. The validation of the proposed tool in terms of accuracy and computational performance, enable us to offer to the microfluidics community a reliable tool to design and optimize droplet generators.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"281 \",\"pages\":\"Article 106366\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001981\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Accurate numerical prototypes of microfluidic droplet generators with open source tools
Droplet-based microfluidics gained significant attention for its high technological impact in various fields like (bio)analysis and (bio)synthesis. Precise and controlled droplet size is critical, for the encapsulated products, or the yield of chemical reactions. In a broad range of experimental parameters, the understanding of how droplets form, interact and move with accurate predictive models is crucial. In this work, numerical prototypes of droplet generators were made with Basilisk, an open source software for solving partial differential equations on adaptive Cartesian meshes including grid adaptation and scalability for High-Performance Computing (HPC). This research aims to analyze and compare the obtained droplets against existing experimental data. The evaluation involves qualitative and quantitative comparisons, considering various channel geometries, flow rates, and rheological conditions. The validation of the proposed tool in terms of accuracy and computational performance, enable us to offer to the microfluidics community a reliable tool to design and optimize droplet generators.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.