Yong-Dong Liang , Zhi-Hui Li , Jie Liang , Jia-Zhi Hu
{"title":"过气航天器再入大气层时反射气体分子的能量容纳对流动结构的影响","authors":"Yong-Dong Liang , Zhi-Hui Li , Jie Liang , Jia-Zhi Hu","doi":"10.1016/j.compfluid.2024.106362","DOIUrl":null,"url":null,"abstract":"<div><p>To study the influence of energy accommodation of scattering gas molecules on flow fields during large expired spacecraft reentry, a more elaborated gas-surface interaction model, compared with full Maxwellian diffuse model, is employed in implicit algorithms based on Boltzmann model equation. The characteristic distributions around cylinder at different fluid regimes are accordingly obtained by implicit algorithms, Navier-Stokes solver and DSMC ((Direct Simulation Monte Carlo) method. And the consistency of these results is verified. It is confirmed that present algorithms are capable of solving external flow problems covering various fluid regimes. Then the simulation results see that under current conditions set in the paper, pressure and temperature are proportional to wall activation (<span><math><mrow><mi>ω</mi><mo>=</mo><mrow><msub><mi>T</mi><mi>w</mi></msub><mo>/</mo><msub><mi>T</mi><mi>∞</mi></msub></mrow></mrow></math></span>, <span><math><msub><mi>T</mi><mi>w</mi></msub></math></span> is surface temperature, <span><math><msub><mi>T</mi><mi>∞</mi></msub></math></span> denotes as free stream temperature), but their amplitudes alter with <span><math><mi>ω</mi></math></span> at different fluid regimes. As for the effects of energy accommodation coefficients (<span><math><msub><mi>α</mi><mi>e</mi></msub></math></span>), both pressure and temperature profiles vary in a linear way with <span><math><msub><mi>α</mi><mi>e</mi></msub></math></span>. However, the variation ranges of these parameters are diverse with regard to different fluid regimes. These observations are favor to the construction of efficient forecasting software, which could predict the flight path of large defunct spacecraft. In this forecasting software, the external ballistics computations and aerothermodynamic simulations are synchronously carried out.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106362"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of energy accommodation of reflected gas molecules on flow structures during expired spacecraft reentry\",\"authors\":\"Yong-Dong Liang , Zhi-Hui Li , Jie Liang , Jia-Zhi Hu\",\"doi\":\"10.1016/j.compfluid.2024.106362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To study the influence of energy accommodation of scattering gas molecules on flow fields during large expired spacecraft reentry, a more elaborated gas-surface interaction model, compared with full Maxwellian diffuse model, is employed in implicit algorithms based on Boltzmann model equation. The characteristic distributions around cylinder at different fluid regimes are accordingly obtained by implicit algorithms, Navier-Stokes solver and DSMC ((Direct Simulation Monte Carlo) method. And the consistency of these results is verified. It is confirmed that present algorithms are capable of solving external flow problems covering various fluid regimes. Then the simulation results see that under current conditions set in the paper, pressure and temperature are proportional to wall activation (<span><math><mrow><mi>ω</mi><mo>=</mo><mrow><msub><mi>T</mi><mi>w</mi></msub><mo>/</mo><msub><mi>T</mi><mi>∞</mi></msub></mrow></mrow></math></span>, <span><math><msub><mi>T</mi><mi>w</mi></msub></math></span> is surface temperature, <span><math><msub><mi>T</mi><mi>∞</mi></msub></math></span> denotes as free stream temperature), but their amplitudes alter with <span><math><mi>ω</mi></math></span> at different fluid regimes. As for the effects of energy accommodation coefficients (<span><math><msub><mi>α</mi><mi>e</mi></msub></math></span>), both pressure and temperature profiles vary in a linear way with <span><math><msub><mi>α</mi><mi>e</mi></msub></math></span>. However, the variation ranges of these parameters are diverse with regard to different fluid regimes. These observations are favor to the construction of efficient forecasting software, which could predict the flight path of large defunct spacecraft. In this forecasting software, the external ballistics computations and aerothermodynamic simulations are synchronously carried out.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"281 \",\"pages\":\"Article 106362\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001944\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001944","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The effects of energy accommodation of reflected gas molecules on flow structures during expired spacecraft reentry
To study the influence of energy accommodation of scattering gas molecules on flow fields during large expired spacecraft reentry, a more elaborated gas-surface interaction model, compared with full Maxwellian diffuse model, is employed in implicit algorithms based on Boltzmann model equation. The characteristic distributions around cylinder at different fluid regimes are accordingly obtained by implicit algorithms, Navier-Stokes solver and DSMC ((Direct Simulation Monte Carlo) method. And the consistency of these results is verified. It is confirmed that present algorithms are capable of solving external flow problems covering various fluid regimes. Then the simulation results see that under current conditions set in the paper, pressure and temperature are proportional to wall activation (, is surface temperature, denotes as free stream temperature), but their amplitudes alter with at different fluid regimes. As for the effects of energy accommodation coefficients (), both pressure and temperature profiles vary in a linear way with . However, the variation ranges of these parameters are diverse with regard to different fluid regimes. These observations are favor to the construction of efficient forecasting software, which could predict the flight path of large defunct spacecraft. In this forecasting software, the external ballistics computations and aerothermodynamic simulations are synchronously carried out.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.