过气航天器再入大气层时反射气体分子的能量容纳对流动结构的影响

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-07-10 DOI:10.1016/j.compfluid.2024.106362
Yong-Dong Liang , Zhi-Hui Li , Jie Liang , Jia-Zhi Hu
{"title":"过气航天器再入大气层时反射气体分子的能量容纳对流动结构的影响","authors":"Yong-Dong Liang ,&nbsp;Zhi-Hui Li ,&nbsp;Jie Liang ,&nbsp;Jia-Zhi Hu","doi":"10.1016/j.compfluid.2024.106362","DOIUrl":null,"url":null,"abstract":"<div><p>To study the influence of energy accommodation of scattering gas molecules on flow fields during large expired spacecraft reentry, a more elaborated gas-surface interaction model, compared with full Maxwellian diffuse model, is employed in implicit algorithms based on Boltzmann model equation. The characteristic distributions around cylinder at different fluid regimes are accordingly obtained by implicit algorithms, Navier-Stokes solver and DSMC ((Direct Simulation Monte Carlo) method. And the consistency of these results is verified. It is confirmed that present algorithms are capable of solving external flow problems covering various fluid regimes. Then the simulation results see that under current conditions set in the paper, pressure and temperature are proportional to wall activation (<span><math><mrow><mi>ω</mi><mo>=</mo><mrow><msub><mi>T</mi><mi>w</mi></msub><mo>/</mo><msub><mi>T</mi><mi>∞</mi></msub></mrow></mrow></math></span>, <span><math><msub><mi>T</mi><mi>w</mi></msub></math></span> is surface temperature, <span><math><msub><mi>T</mi><mi>∞</mi></msub></math></span> denotes as free stream temperature), but their amplitudes alter with <span><math><mi>ω</mi></math></span> at different fluid regimes. As for the effects of energy accommodation coefficients (<span><math><msub><mi>α</mi><mi>e</mi></msub></math></span>), both pressure and temperature profiles vary in a linear way with <span><math><msub><mi>α</mi><mi>e</mi></msub></math></span>. However, the variation ranges of these parameters are diverse with regard to different fluid regimes. These observations are favor to the construction of efficient forecasting software, which could predict the flight path of large defunct spacecraft. In this forecasting software, the external ballistics computations and aerothermodynamic simulations are synchronously carried out.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106362"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of energy accommodation of reflected gas molecules on flow structures during expired spacecraft reentry\",\"authors\":\"Yong-Dong Liang ,&nbsp;Zhi-Hui Li ,&nbsp;Jie Liang ,&nbsp;Jia-Zhi Hu\",\"doi\":\"10.1016/j.compfluid.2024.106362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To study the influence of energy accommodation of scattering gas molecules on flow fields during large expired spacecraft reentry, a more elaborated gas-surface interaction model, compared with full Maxwellian diffuse model, is employed in implicit algorithms based on Boltzmann model equation. The characteristic distributions around cylinder at different fluid regimes are accordingly obtained by implicit algorithms, Navier-Stokes solver and DSMC ((Direct Simulation Monte Carlo) method. And the consistency of these results is verified. It is confirmed that present algorithms are capable of solving external flow problems covering various fluid regimes. Then the simulation results see that under current conditions set in the paper, pressure and temperature are proportional to wall activation (<span><math><mrow><mi>ω</mi><mo>=</mo><mrow><msub><mi>T</mi><mi>w</mi></msub><mo>/</mo><msub><mi>T</mi><mi>∞</mi></msub></mrow></mrow></math></span>, <span><math><msub><mi>T</mi><mi>w</mi></msub></math></span> is surface temperature, <span><math><msub><mi>T</mi><mi>∞</mi></msub></math></span> denotes as free stream temperature), but their amplitudes alter with <span><math><mi>ω</mi></math></span> at different fluid regimes. As for the effects of energy accommodation coefficients (<span><math><msub><mi>α</mi><mi>e</mi></msub></math></span>), both pressure and temperature profiles vary in a linear way with <span><math><msub><mi>α</mi><mi>e</mi></msub></math></span>. However, the variation ranges of these parameters are diverse with regard to different fluid regimes. These observations are favor to the construction of efficient forecasting software, which could predict the flight path of large defunct spacecraft. In this forecasting software, the external ballistics computations and aerothermodynamic simulations are synchronously carried out.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"281 \",\"pages\":\"Article 106362\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001944\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001944","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了研究散射气体分子的能量容纳对大过载航天器再入大气层过程中流场的影响,在基于波尔兹曼模型方程的隐式算法中,采用了比完全麦克斯韦扩散模型更精细的气体-表面相互作用模型。通过隐式算法、纳维-斯托克斯求解器和 DSMC(直接模拟蒙特卡罗)方法,相应地得到了不同流体状态下气缸周围的特征分布。并验证了这些结果的一致性。结果证实,目前的算法能够解决涵盖各种流体状态的外部流动问题。模拟结果表明,在本文设定的当前条件下,压力和温度与壁面活化成正比(ω=Tw/T∞,Tw 为表面温度,T∞ 表示自由流温度),但在不同流体状态下,它们的振幅随 ω 而变化。至于能量容纳系数(αe)的影响,压力和温度曲线都随 αe 呈线性变化。不过,这些参数的变化范围因流体状态的不同而各异。这些观察结果有利于构建高效的预测软件,从而预测大型失效航天器的飞行路径。在这个预测软件中,外部弹道计算和空气热力学模拟是同步进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of energy accommodation of reflected gas molecules on flow structures during expired spacecraft reentry

To study the influence of energy accommodation of scattering gas molecules on flow fields during large expired spacecraft reentry, a more elaborated gas-surface interaction model, compared with full Maxwellian diffuse model, is employed in implicit algorithms based on Boltzmann model equation. The characteristic distributions around cylinder at different fluid regimes are accordingly obtained by implicit algorithms, Navier-Stokes solver and DSMC ((Direct Simulation Monte Carlo) method. And the consistency of these results is verified. It is confirmed that present algorithms are capable of solving external flow problems covering various fluid regimes. Then the simulation results see that under current conditions set in the paper, pressure and temperature are proportional to wall activation (ω=Tw/T, Tw is surface temperature, T denotes as free stream temperature), but their amplitudes alter with ω at different fluid regimes. As for the effects of energy accommodation coefficients (αe), both pressure and temperature profiles vary in a linear way with αe. However, the variation ranges of these parameters are diverse with regard to different fluid regimes. These observations are favor to the construction of efficient forecasting software, which could predict the flight path of large defunct spacecraft. In this forecasting software, the external ballistics computations and aerothermodynamic simulations are synchronously carried out.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board Efficient quantum lattice gas automata Energy-consistent discretization of viscous dissipation with application to natural convection flow The numerical analysis of complete and partial electrocoalescence in the droplet-layer system employing the sharp interface technique for multiphase-medium simulation Numerical investigation on the end effects of the flow past a finite rotating circular cylinder with two free ends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1