{"title":"铱和钌配合物的二元和异质结构微板:制备、表征和热响应发射","authors":"Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao","doi":"10.1016/j.cjsc.2024.100393","DOIUrl":null,"url":null,"abstract":"<div><p>Thermo-responsive microcrystals exhibiting obvious emission intensity or color changes have great potentials in sensing, information encryption, and microelectronics. We report herein the binary assembly of a blue-emissive iridium complex and a red-emissive ruthenium complex into homogeneously-doped or optically-heterostructured microcrystals with thermo-responsive properties. Depending on the assembly conditions, lateral or longitudinal triblock heterostructures with a microplate shape are obtained, which display distinct emission pattern changes upon heating as a result of the decreased efficiency of energy transfer. In addition, branched heterostructures are prepared by a stepwise assembly. The luminescence polarization of the homogeneously-doped binary crystals and the waveguiding property of the longitudinal triblock heterostructure are further examined. This work evidences the versatility of transition metal complexes in the assembly into various luminescent nano/micro structures with potential applications in thermo-sensing and nanophotonics.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100393"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission\",\"authors\":\"Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao\",\"doi\":\"10.1016/j.cjsc.2024.100393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermo-responsive microcrystals exhibiting obvious emission intensity or color changes have great potentials in sensing, information encryption, and microelectronics. We report herein the binary assembly of a blue-emissive iridium complex and a red-emissive ruthenium complex into homogeneously-doped or optically-heterostructured microcrystals with thermo-responsive properties. Depending on the assembly conditions, lateral or longitudinal triblock heterostructures with a microplate shape are obtained, which display distinct emission pattern changes upon heating as a result of the decreased efficiency of energy transfer. In addition, branched heterostructures are prepared by a stepwise assembly. The luminescence polarization of the homogeneously-doped binary crystals and the waveguiding property of the longitudinal triblock heterostructure are further examined. This work evidences the versatility of transition metal complexes in the assembly into various luminescent nano/micro structures with potential applications in thermo-sensing and nanophotonics.</p></div>\",\"PeriodicalId\":10151,\"journal\":{\"name\":\"结构化学\",\"volume\":\"43 10\",\"pages\":\"Article 100393\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"结构化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254586124002460\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124002460","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission
Thermo-responsive microcrystals exhibiting obvious emission intensity or color changes have great potentials in sensing, information encryption, and microelectronics. We report herein the binary assembly of a blue-emissive iridium complex and a red-emissive ruthenium complex into homogeneously-doped or optically-heterostructured microcrystals with thermo-responsive properties. Depending on the assembly conditions, lateral or longitudinal triblock heterostructures with a microplate shape are obtained, which display distinct emission pattern changes upon heating as a result of the decreased efficiency of energy transfer. In addition, branched heterostructures are prepared by a stepwise assembly. The luminescence polarization of the homogeneously-doped binary crystals and the waveguiding property of the longitudinal triblock heterostructure are further examined. This work evidences the versatility of transition metal complexes in the assembly into various luminescent nano/micro structures with potential applications in thermo-sensing and nanophotonics.
期刊介绍:
Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.