Abdalla Hadabi , Zheng Qu , Kuo-Hui Yeh , Chien-Ming Chen , Saru Kumari , Hu Xiong
{"title":"用于将物联网整合到医疗系统中的异构和明文可校验签名加密技术","authors":"Abdalla Hadabi , Zheng Qu , Kuo-Hui Yeh , Chien-Ming Chen , Saru Kumari , Hu Xiong","doi":"10.1016/j.sysarc.2024.103235","DOIUrl":null,"url":null,"abstract":"<div><p>Preserving the confidentiality and integrity of data transmission is paramount in the Internet of Things (IoT)-based healthcare systems. Current encryption techniques that allow plaintext checks primarily serve a specific cryptosystem, lacking the adaptability to work with a diverse system incorporating various cryptographic methods. To address this, we present a unique online/offline heterogeneous signcryption scheme with plaintext checkable encryption (HOOSC-PCE). This approach enables the transition of signcrypted messages from an identity-based cryptosystem (IBC) to a public key infrastructure (PKI) system, improving information interoperability. A key aspect of our scheme is its capacity to allow cloud servers to perform plaintext queries, facilitating efficient data searches using plaintext keywords over encrypted data. Furthermore, the signcryption process is divided into online and offline phases. The online phase handles tasks that require fewer resources, while the offline phase carries out more resource-intensive preparatory tasks. We rigorously tested the HOOSC-PCE scheme’s security by proving it secure under the Random Oracle Model (ROM). Meanwhile, compared to similar work, it effectively reduces computation costs by 46.39%, 19.45%, 18.73%, and 13.25% across offline encryption, online encryption, decryption, and search algorithms. The results indicate that the HOOSC-PCE is secure and efficient, confirming its feasibility for IoT-based healthcare systems.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"154 ","pages":"Article 103235"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous and plaintext checkable signcryption for integrating IoT in healthcare system\",\"authors\":\"Abdalla Hadabi , Zheng Qu , Kuo-Hui Yeh , Chien-Ming Chen , Saru Kumari , Hu Xiong\",\"doi\":\"10.1016/j.sysarc.2024.103235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Preserving the confidentiality and integrity of data transmission is paramount in the Internet of Things (IoT)-based healthcare systems. Current encryption techniques that allow plaintext checks primarily serve a specific cryptosystem, lacking the adaptability to work with a diverse system incorporating various cryptographic methods. To address this, we present a unique online/offline heterogeneous signcryption scheme with plaintext checkable encryption (HOOSC-PCE). This approach enables the transition of signcrypted messages from an identity-based cryptosystem (IBC) to a public key infrastructure (PKI) system, improving information interoperability. A key aspect of our scheme is its capacity to allow cloud servers to perform plaintext queries, facilitating efficient data searches using plaintext keywords over encrypted data. Furthermore, the signcryption process is divided into online and offline phases. The online phase handles tasks that require fewer resources, while the offline phase carries out more resource-intensive preparatory tasks. We rigorously tested the HOOSC-PCE scheme’s security by proving it secure under the Random Oracle Model (ROM). Meanwhile, compared to similar work, it effectively reduces computation costs by 46.39%, 19.45%, 18.73%, and 13.25% across offline encryption, online encryption, decryption, and search algorithms. The results indicate that the HOOSC-PCE is secure and efficient, confirming its feasibility for IoT-based healthcare systems.</p></div>\",\"PeriodicalId\":50027,\"journal\":{\"name\":\"Journal of Systems Architecture\",\"volume\":\"154 \",\"pages\":\"Article 103235\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Architecture\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383762124001723\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124001723","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Heterogeneous and plaintext checkable signcryption for integrating IoT in healthcare system
Preserving the confidentiality and integrity of data transmission is paramount in the Internet of Things (IoT)-based healthcare systems. Current encryption techniques that allow plaintext checks primarily serve a specific cryptosystem, lacking the adaptability to work with a diverse system incorporating various cryptographic methods. To address this, we present a unique online/offline heterogeneous signcryption scheme with plaintext checkable encryption (HOOSC-PCE). This approach enables the transition of signcrypted messages from an identity-based cryptosystem (IBC) to a public key infrastructure (PKI) system, improving information interoperability. A key aspect of our scheme is its capacity to allow cloud servers to perform plaintext queries, facilitating efficient data searches using plaintext keywords over encrypted data. Furthermore, the signcryption process is divided into online and offline phases. The online phase handles tasks that require fewer resources, while the offline phase carries out more resource-intensive preparatory tasks. We rigorously tested the HOOSC-PCE scheme’s security by proving it secure under the Random Oracle Model (ROM). Meanwhile, compared to similar work, it effectively reduces computation costs by 46.39%, 19.45%, 18.73%, and 13.25% across offline encryption, online encryption, decryption, and search algorithms. The results indicate that the HOOSC-PCE is secure and efficient, confirming its feasibility for IoT-based healthcare systems.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.