改进型狼群算法在电动汽车多微网系统规划和运行中的应用

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Science and Technology Pub Date : 2024-07-01 DOI:10.1088/1361-6501/ad574b
Guohao Sun, Shouming Zhang, Sen Yang, Yuhao Zhao
{"title":"改进型狼群算法在电动汽车多微网系统规划和运行中的应用","authors":"Guohao Sun, Shouming Zhang, Sen Yang, Yuhao Zhao","doi":"10.1088/1361-6501/ad574b","DOIUrl":null,"url":null,"abstract":"With the rapid growth of renewable energy sources and the widespread use of electric vehicles (EVs), the planning and operation problems of multiple microgrids (MMGs) have become more complex and diverse. This paper develop an MMG model with multiple renewable energy sources and small-scale EVs, aiming to maximize the use of renewable energy sources and realize the charging demand of EVs, and highlighting the potential role of EVs in MMGs. In addition, the paper underscores the indispensable role of measurement technology in microgrids and the impetus that microgrid development provides for advancements in measurement technology. To this end, this paper proposes an improved Wolf pack algorithm (IWPA) based on the standard Wolf Pack Algorithm (WPA) with a spiral search approach and chaotic updating of individuals to improve the global search capability of the algorithm and the complexity of solving the scheduling problem. Through simulation experiments on ten standard test functions and examples, it is verified that the IWPA algorithm improves the search accuracy by 2.8%–6.8% and 13.9%–18.3% in the worst and best cases, respectively, in comparison with other algorithms, and it also has a faster convergence speed. Meanwhile, this paper proposes a load interval pricing strategy for the shortcomings of time-of-use pricing strategy and traditional real-time pricing strategy, which is simulated under grid-connected operation, isolated grid operation, and multi-microgrid cooperative operation modes, and the simulation results of the arithmetic example show that this strategy can effectively reduce carbon emissions, and IWPA can effectively coordinate renewable energy, EVs, and other energy resources to achieve efficient energy management of MMGs and supply-demand balance.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of improved Wolf pack algorithm in planning and operation of multi-microgrid systems with electric vehicles\",\"authors\":\"Guohao Sun, Shouming Zhang, Sen Yang, Yuhao Zhao\",\"doi\":\"10.1088/1361-6501/ad574b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of renewable energy sources and the widespread use of electric vehicles (EVs), the planning and operation problems of multiple microgrids (MMGs) have become more complex and diverse. This paper develop an MMG model with multiple renewable energy sources and small-scale EVs, aiming to maximize the use of renewable energy sources and realize the charging demand of EVs, and highlighting the potential role of EVs in MMGs. In addition, the paper underscores the indispensable role of measurement technology in microgrids and the impetus that microgrid development provides for advancements in measurement technology. To this end, this paper proposes an improved Wolf pack algorithm (IWPA) based on the standard Wolf Pack Algorithm (WPA) with a spiral search approach and chaotic updating of individuals to improve the global search capability of the algorithm and the complexity of solving the scheduling problem. Through simulation experiments on ten standard test functions and examples, it is verified that the IWPA algorithm improves the search accuracy by 2.8%–6.8% and 13.9%–18.3% in the worst and best cases, respectively, in comparison with other algorithms, and it also has a faster convergence speed. Meanwhile, this paper proposes a load interval pricing strategy for the shortcomings of time-of-use pricing strategy and traditional real-time pricing strategy, which is simulated under grid-connected operation, isolated grid operation, and multi-microgrid cooperative operation modes, and the simulation results of the arithmetic example show that this strategy can effectively reduce carbon emissions, and IWPA can effectively coordinate renewable energy, EVs, and other energy resources to achieve efficient energy management of MMGs and supply-demand balance.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad574b\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad574b","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着可再生能源的快速增长和电动汽车(EV)的广泛使用,多微网(MMG)的规划和运行问题变得更加复杂和多样化。本文建立了一个具有多种可再生能源和小型电动汽车的多微网模型,旨在最大限度地利用可再生能源和实现电动汽车的充电需求,并强调电动汽车在多微网中的潜在作用。此外,本文还强调了测量技术在微电网中不可或缺的作用,以及微电网发展对测量技术进步的推动作用。为此,本文在标准狼群算法(WPA)的基础上,提出了一种改进的狼群算法(IWPA),采用螺旋式搜索方法和个体的混沌更新,以提高算法的全局搜索能力和解决调度问题的复杂性。通过对十个标准测试函数和实例的仿真实验,验证了 IWPA 算法与其他算法相比,在最差和最佳情况下,搜索精度分别提高了 2.8%-6.8%和 13.9%-18.3%,而且收敛速度更快。同时,本文针对分时定价策略和传统实时定价策略的不足,提出了负荷区间定价策略,并在并网运行、孤网运行和多微网协同运行模式下进行了仿真,算例仿真结果表明,该策略能有效减少碳排放,IWPA能有效协调可再生能源、电动汽车等能源资源,实现多微网高效能源管理和供需平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of improved Wolf pack algorithm in planning and operation of multi-microgrid systems with electric vehicles
With the rapid growth of renewable energy sources and the widespread use of electric vehicles (EVs), the planning and operation problems of multiple microgrids (MMGs) have become more complex and diverse. This paper develop an MMG model with multiple renewable energy sources and small-scale EVs, aiming to maximize the use of renewable energy sources and realize the charging demand of EVs, and highlighting the potential role of EVs in MMGs. In addition, the paper underscores the indispensable role of measurement technology in microgrids and the impetus that microgrid development provides for advancements in measurement technology. To this end, this paper proposes an improved Wolf pack algorithm (IWPA) based on the standard Wolf Pack Algorithm (WPA) with a spiral search approach and chaotic updating of individuals to improve the global search capability of the algorithm and the complexity of solving the scheduling problem. Through simulation experiments on ten standard test functions and examples, it is verified that the IWPA algorithm improves the search accuracy by 2.8%–6.8% and 13.9%–18.3% in the worst and best cases, respectively, in comparison with other algorithms, and it also has a faster convergence speed. Meanwhile, this paper proposes a load interval pricing strategy for the shortcomings of time-of-use pricing strategy and traditional real-time pricing strategy, which is simulated under grid-connected operation, isolated grid operation, and multi-microgrid cooperative operation modes, and the simulation results of the arithmetic example show that this strategy can effectively reduce carbon emissions, and IWPA can effectively coordinate renewable energy, EVs, and other energy resources to achieve efficient energy management of MMGs and supply-demand balance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
期刊最新文献
Morphological characterization of concave particle based on convex decomposition TSMDA: intelligent fault diagnosis of rolling bearing with two stage multi-source domain adaptation Precise orbit determination of integrated BDS-3 and LEO satellites with ambiguity fixing under regional ground stations High-accuracy and lightweight weld surface defect detector based on graph convolution decoupling head Gap Measurement Method Based on Projection Lines and Convex Analysis of 3D Points Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1