{"title":"传热对超临界二氧化碳萃取工艺的加压、萃取和减压阶段的影响。2.模拟双容器工业装置","authors":"","doi":"10.1016/j.supflu.2024.106348","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we simulated the heat transfer in a two-vessel (1-m<sup>3</sup>, length-to-diameter ratio of 4) industrial plant to assess the effect of the temperature gradients formed during the reconditioning stage on the extraction curves. We simulated the extraction of 1-mm particles using 5 mm/s of CO<sub>2</sub> at 48 MPa and 40 °C (case with an imposed temperature gradient) or 60 °C (case with temperature gradients from the reconditioning stage), with the service fluid at 60 °C. The results of these non-isothermal extractions were compared with those obtained in representative isothermal cases. The temperature gradients slightly affected the cumulative extraction curves in non-isothermal cases. We considered the presence of a basket containing the solid substrate. We also changed the superficial CO<sub>2</sub> velocity to 3 or 10 mm/s and the particle size to 0.50 or 1.25 mm to compare the extraction curves. The effects of the basket and the changes in superficial CO<sub>2</sub> velocity and particle size were minor. We simulated a limit case with higher temperature and pressure (80 °C and 70 MPa), where the extraction time was extremely short (10 min) and more significant temperature gradients were formed during the reconditioning stage. We observed more significant differences at this extreme extraction condition than when using an isothermal process at the required extraction temperature.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of heat transfer on the pressurization, extraction, and depressurization stages of a supercritical CO2 extraction process. 2. Simulation of a two-vessel industrial plant\",\"authors\":\"\",\"doi\":\"10.1016/j.supflu.2024.106348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we simulated the heat transfer in a two-vessel (1-m<sup>3</sup>, length-to-diameter ratio of 4) industrial plant to assess the effect of the temperature gradients formed during the reconditioning stage on the extraction curves. We simulated the extraction of 1-mm particles using 5 mm/s of CO<sub>2</sub> at 48 MPa and 40 °C (case with an imposed temperature gradient) or 60 °C (case with temperature gradients from the reconditioning stage), with the service fluid at 60 °C. The results of these non-isothermal extractions were compared with those obtained in representative isothermal cases. The temperature gradients slightly affected the cumulative extraction curves in non-isothermal cases. We considered the presence of a basket containing the solid substrate. We also changed the superficial CO<sub>2</sub> velocity to 3 or 10 mm/s and the particle size to 0.50 or 1.25 mm to compare the extraction curves. The effects of the basket and the changes in superficial CO<sub>2</sub> velocity and particle size were minor. We simulated a limit case with higher temperature and pressure (80 °C and 70 MPa), where the extraction time was extremely short (10 min) and more significant temperature gradients were formed during the reconditioning stage. We observed more significant differences at this extreme extraction condition than when using an isothermal process at the required extraction temperature.</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896844624001839\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624001839","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of heat transfer on the pressurization, extraction, and depressurization stages of a supercritical CO2 extraction process. 2. Simulation of a two-vessel industrial plant
In this work, we simulated the heat transfer in a two-vessel (1-m3, length-to-diameter ratio of 4) industrial plant to assess the effect of the temperature gradients formed during the reconditioning stage on the extraction curves. We simulated the extraction of 1-mm particles using 5 mm/s of CO2 at 48 MPa and 40 °C (case with an imposed temperature gradient) or 60 °C (case with temperature gradients from the reconditioning stage), with the service fluid at 60 °C. The results of these non-isothermal extractions were compared with those obtained in representative isothermal cases. The temperature gradients slightly affected the cumulative extraction curves in non-isothermal cases. We considered the presence of a basket containing the solid substrate. We also changed the superficial CO2 velocity to 3 or 10 mm/s and the particle size to 0.50 or 1.25 mm to compare the extraction curves. The effects of the basket and the changes in superficial CO2 velocity and particle size were minor. We simulated a limit case with higher temperature and pressure (80 °C and 70 MPa), where the extraction time was extremely short (10 min) and more significant temperature gradients were formed during the reconditioning stage. We observed more significant differences at this extreme extraction condition than when using an isothermal process at the required extraction temperature.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.