有效管理农业杂草的新分类方法

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2024-07-14 DOI:10.1016/j.atech.2024.100505
{"title":"有效管理农业杂草的新分类方法","authors":"","doi":"10.1016/j.atech.2024.100505","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate weed detection in agricultural images is a crucial challenge for improving crop management practices and reducing chemical usage. In this study, we propose an innovative segmentation model called DWUNet, inspired by popular architectures and incorporating the latest advances in the state of the art. Our model delivers remarkable accuracy, with a Jaccard index reaching 0.825, while ensuring fast inference speed of only 8 ms per image, thus providing an optimal solution for real-time applications. By comparing DWUNet to several state-of-the-art models, we demonstrate its superiority in terms of accuracy and efficiency. Furthermore, a qualitative analysis of the visual results confirms DWUNet's ability to accurately detect weeds and generalize results beyond the training data. This study represents a significant advancement in the field of precision agriculture, providing a powerful tool for sustainable crop management and reducing environmental impact.</p></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772375524001102/pdfft?md5=36ca2d7bf923baf429e5c7e6de85f0aa&pid=1-s2.0-S2772375524001102-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New segmentation approach for effective weed management in agriculture\",\"authors\":\"\",\"doi\":\"10.1016/j.atech.2024.100505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate weed detection in agricultural images is a crucial challenge for improving crop management practices and reducing chemical usage. In this study, we propose an innovative segmentation model called DWUNet, inspired by popular architectures and incorporating the latest advances in the state of the art. Our model delivers remarkable accuracy, with a Jaccard index reaching 0.825, while ensuring fast inference speed of only 8 ms per image, thus providing an optimal solution for real-time applications. By comparing DWUNet to several state-of-the-art models, we demonstrate its superiority in terms of accuracy and efficiency. Furthermore, a qualitative analysis of the visual results confirms DWUNet's ability to accurately detect weeds and generalize results beyond the training data. This study represents a significant advancement in the field of precision agriculture, providing a powerful tool for sustainable crop management and reducing environmental impact.</p></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772375524001102/pdfft?md5=36ca2d7bf923baf429e5c7e6de85f0aa&pid=1-s2.0-S2772375524001102-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375524001102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524001102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

准确检测农业图像中的杂草是改进作物管理方法和减少化学品使用量的一项重要挑战。在本研究中,我们提出了一种名为 DWUNet 的创新分割模型,该模型受到流行架构的启发,并融合了最新的技术进展。我们的模型具有出色的准确性,Jaccard 指数达到 0.825,同时确保了每幅图像仅 8 毫秒的快速推理速度,从而为实时应用提供了最佳解决方案。通过将 DWUNet 与几种最先进的模型进行比较,我们证明了它在准确性和效率方面的优越性。此外,对视觉结果的定性分析也证实了 DWUNet 能够准确检测杂草,并将结果推广到训练数据之外。这项研究代表了精准农业领域的重大进步,为可持续作物管理和减少环境影响提供了有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New segmentation approach for effective weed management in agriculture

Accurate weed detection in agricultural images is a crucial challenge for improving crop management practices and reducing chemical usage. In this study, we propose an innovative segmentation model called DWUNet, inspired by popular architectures and incorporating the latest advances in the state of the art. Our model delivers remarkable accuracy, with a Jaccard index reaching 0.825, while ensuring fast inference speed of only 8 ms per image, thus providing an optimal solution for real-time applications. By comparing DWUNet to several state-of-the-art models, we demonstrate its superiority in terms of accuracy and efficiency. Furthermore, a qualitative analysis of the visual results confirms DWUNet's ability to accurately detect weeds and generalize results beyond the training data. This study represents a significant advancement in the field of precision agriculture, providing a powerful tool for sustainable crop management and reducing environmental impact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Development of a low-cost smart irrigation system for sustainable water management in the Mediterranean region Cover crop impacts on soil organic matter dynamics and its quantification using UAV and proximal sensing Design and development of machine vision robotic arm for vegetable crops in hydroponics Cybersecurity threats and mitigation measures in agriculture 4.0 and 5.0 Farmer's attitudes towards GHG emissions and adoption to low-cost sensor-driven smart farming for mitigation: The case of Ireland tillage and horticultural farmers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1