实现高热电性能的 N 型锡-铋-碲热电薄膜中的双相竞争行为

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Progress in Natural Science: Materials International Pub Date : 2024-08-01 DOI:10.1016/j.pnsc.2024.07.008
{"title":"实现高热电性能的 N 型锡-铋-碲热电薄膜中的双相竞争行为","authors":"","doi":"10.1016/j.pnsc.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>The dual-phase competitive behavior is introduced as an effective strategy to optimize the physical and chemical properties of N-type Bi<sub>2</sub>Te<sub>3</sub> thermoelectric (TE) materials. Controllable SnTe-embedded Bi<sub>2</sub>Te<sub>3</sub><span> nanocomposites can be synthesized with the addition of excessive Sn into Bi</span><sub>2</sub>Te<sub>3</sub> by tuning the crystallization behavior under proper thermal heating temperature. Notably, the precipitation temperature of Bi<sub>2</sub>Te<sub>3</sub> increases from 473 ​K for Sn<sub>20.9</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>79.1</sub> to 573 ​K for Sn<sub>34.4</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>65.6</sub><span>, expanding the controllable temperature span for the presence of SnTe phase. The second-phase nanoprecipitate SnTe can improve electrical conductivity by competing with the Bi</span><sub>2</sub>Te<sub>3</sub><span><span> phase, achieving an increase of four orders of magnitude at the critical temperature of ∼500 ​K. Simultaneously, it increases the interfacial energy filtration effect between </span>nanocrystalline<span> grains, decoupling electrical parameters between conductivity and Seebeck coefficient. Consequently, the high power factor of ∼147 ​μW/mK</span></span><sup>2</sup> at 650 ​K for optimized Sn<sub>26.6</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>73.4</sub> films can be obtained, which is more than twice that of the pure Bi<sub>2</sub>Te<sub>3</sub> material. Our work demonstrates a new physical mechanism to unravel the complicated structure-property relationship by dual-phase competitive behavior during phase transition. This study fills the gap in knowledge on the effects of the SnTe phase regarding the Bi<sub>2</sub>Te<sub>3</sub><span> system and provides guidance for the innovative design of high-performing inorganic thermoelectrics.</span></p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-phase competitive behavior in N-type Sn–Bi–Te thermoelectric films achieving high thermoelectric performance\",\"authors\":\"\",\"doi\":\"10.1016/j.pnsc.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dual-phase competitive behavior is introduced as an effective strategy to optimize the physical and chemical properties of N-type Bi<sub>2</sub>Te<sub>3</sub> thermoelectric (TE) materials. Controllable SnTe-embedded Bi<sub>2</sub>Te<sub>3</sub><span> nanocomposites can be synthesized with the addition of excessive Sn into Bi</span><sub>2</sub>Te<sub>3</sub> by tuning the crystallization behavior under proper thermal heating temperature. Notably, the precipitation temperature of Bi<sub>2</sub>Te<sub>3</sub> increases from 473 ​K for Sn<sub>20.9</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>79.1</sub> to 573 ​K for Sn<sub>34.4</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>65.6</sub><span>, expanding the controllable temperature span for the presence of SnTe phase. The second-phase nanoprecipitate SnTe can improve electrical conductivity by competing with the Bi</span><sub>2</sub>Te<sub>3</sub><span><span> phase, achieving an increase of four orders of magnitude at the critical temperature of ∼500 ​K. Simultaneously, it increases the interfacial energy filtration effect between </span>nanocrystalline<span> grains, decoupling electrical parameters between conductivity and Seebeck coefficient. Consequently, the high power factor of ∼147 ​μW/mK</span></span><sup>2</sup> at 650 ​K for optimized Sn<sub>26.6</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>73.4</sub> films can be obtained, which is more than twice that of the pure Bi<sub>2</sub>Te<sub>3</sub> material. Our work demonstrates a new physical mechanism to unravel the complicated structure-property relationship by dual-phase competitive behavior during phase transition. This study fills the gap in knowledge on the effects of the SnTe phase regarding the Bi<sub>2</sub>Te<sub>3</sub><span> system and provides guidance for the innovative design of high-performing inorganic thermoelectrics.</span></p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124001576\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001576","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

双相竞争行为是优化 N 型 Bi2Te3 热电(TE)材料物理和化学特性的有效策略。在适当的热加热温度下,通过调整结晶行为,可以在 Bi2Te3 中加入过量的锡,从而合成出可控的锡碲包埋 Bi2Te3 纳米复合材料。值得注意的是,Bi2Te3 的析出温度从 Sn20.9(Bi2Te3)79.1 的 473 K 升高到 Sn34.4(Bi2Te3)65.6 的 573 K,扩大了 SnTe 相存在的可控温度范围。第二相纳米沉淀 SnTe 可通过与 Bi2Te3 相竞争来提高导电性,在临界温度 ∼500 K 时可提高四个数量级。同时,它还增加了纳米晶粒之间的界面能量过滤效应,使电导率和塞贝克系数之间的电气参数去耦。因此,优化的 Sn26.6(Bi2Te3)73.4薄膜在 650 K 时可获得 ∼147 μW/mK2 的高功率因数,是纯 Bi2Te3 材料的两倍多。我们的工作展示了一种新的物理机制,通过相变过程中的双相竞争行为来揭示复杂的结构-性能关系。这项研究填补了 SnTe 相对 Bi2Te3 体系影响的知识空白,为高性能无机热电材料的创新设计提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-phase competitive behavior in N-type Sn–Bi–Te thermoelectric films achieving high thermoelectric performance

The dual-phase competitive behavior is introduced as an effective strategy to optimize the physical and chemical properties of N-type Bi2Te3 thermoelectric (TE) materials. Controllable SnTe-embedded Bi2Te3 nanocomposites can be synthesized with the addition of excessive Sn into Bi2Te3 by tuning the crystallization behavior under proper thermal heating temperature. Notably, the precipitation temperature of Bi2Te3 increases from 473 ​K for Sn20.9(Bi2Te3)79.1 to 573 ​K for Sn34.4(Bi2Te3)65.6, expanding the controllable temperature span for the presence of SnTe phase. The second-phase nanoprecipitate SnTe can improve electrical conductivity by competing with the Bi2Te3 phase, achieving an increase of four orders of magnitude at the critical temperature of ∼500 ​K. Simultaneously, it increases the interfacial energy filtration effect between nanocrystalline grains, decoupling electrical parameters between conductivity and Seebeck coefficient. Consequently, the high power factor of ∼147 ​μW/mK2 at 650 ​K for optimized Sn26.6(Bi2Te3)73.4 films can be obtained, which is more than twice that of the pure Bi2Te3 material. Our work demonstrates a new physical mechanism to unravel the complicated structure-property relationship by dual-phase competitive behavior during phase transition. This study fills the gap in knowledge on the effects of the SnTe phase regarding the Bi2Te3 system and provides guidance for the innovative design of high-performing inorganic thermoelectrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
2.10%
发文量
2812
审稿时长
49 days
期刊介绍: Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings. As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.
期刊最新文献
Editorial Board Enhanced air-poisoning resistance in vanadium-based hydrogen storage alloy by addition of Si Advances in CO-tolerant anode catalysts for proton exchange membrane fuel cells Superior triethylamine-sensing properties based on SnO2 hollow nanospheres synthesized via one-step process Enhanced light harvesting ability in hollow Pt/TiO2 nanoreactor for boosting tetracycline photodegradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1