盐度变化对生物固结法改良土壤液化潜力的影响

N. A. Diana, R. A. A. Soemitro, J. J. Ekaputri, T. R. Satrya, D. Warnana
{"title":"盐度变化对生物固结法改良土壤液化潜力的影响","authors":"N. A. Diana, R. A. A. Soemitro, J. J. Ekaputri, T. R. Satrya, D. Warnana","doi":"10.1088/1755-1315/1372/1/012071","DOIUrl":null,"url":null,"abstract":"\n This article presents an innovative method of soil improvement cementing to increase the shearing strength of very loose sand with 10% relative density (Dr) in saline conditions. Salt in saline soils destroys the stability of stable soils. In contrast, the salt content reduces the level of homogenization of unstable soils, causes technical problems in calcareous soils, and affects their stability, especially if the salt content is more than 3.0%. The variations in salinity levels can determine the optimal percentage of salt levels in the stabilized soil. The application of biocementation to saline soil can drastically increase the shear strength of soil in soil with potential liquefaction in coastal areas due to earthquakes. Calcium carbonate deposition (MICP) in the microbial-induced biocementing process is a new method that utilizes the metabolic processes of microorganisms in this study using Bacillus sp. In the MICP process, microbes need Ca2+ ions obtained from fly ash, which can produce SiO2 and CaO to produce CaCO3 for binding between particles. Soil improvement was carried out by combining initial soil, fly ash, mycobacteria, and variations in salinity obtained from NaCl with varying percentages of 0%, 1%, 2%, and 3,4% after testing at curing times 7, 14, 21, and 28 days. The research samples from the UCS and direct shear tests showed that the shear and UC strength that were treated increased. The highest increase in shear strength was at 3,4% salinity at 28 days of 80.9°. CaCO3 production resulting from the binding between particles in the biocementing reaction can be seen from the results of SEM tests. Soil improvement using biocementing in this study resulted in an effective increase in the strength of loose sand soil in salinity condition.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"71 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of variations in salinity levels on the biocementing process on soil improvement of liquefaction potential\",\"authors\":\"N. A. Diana, R. A. A. Soemitro, J. J. Ekaputri, T. R. Satrya, D. Warnana\",\"doi\":\"10.1088/1755-1315/1372/1/012071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article presents an innovative method of soil improvement cementing to increase the shearing strength of very loose sand with 10% relative density (Dr) in saline conditions. Salt in saline soils destroys the stability of stable soils. In contrast, the salt content reduces the level of homogenization of unstable soils, causes technical problems in calcareous soils, and affects their stability, especially if the salt content is more than 3.0%. The variations in salinity levels can determine the optimal percentage of salt levels in the stabilized soil. The application of biocementation to saline soil can drastically increase the shear strength of soil in soil with potential liquefaction in coastal areas due to earthquakes. Calcium carbonate deposition (MICP) in the microbial-induced biocementing process is a new method that utilizes the metabolic processes of microorganisms in this study using Bacillus sp. In the MICP process, microbes need Ca2+ ions obtained from fly ash, which can produce SiO2 and CaO to produce CaCO3 for binding between particles. Soil improvement was carried out by combining initial soil, fly ash, mycobacteria, and variations in salinity obtained from NaCl with varying percentages of 0%, 1%, 2%, and 3,4% after testing at curing times 7, 14, 21, and 28 days. The research samples from the UCS and direct shear tests showed that the shear and UC strength that were treated increased. The highest increase in shear strength was at 3,4% salinity at 28 days of 80.9°. CaCO3 production resulting from the binding between particles in the biocementing reaction can be seen from the results of SEM tests. Soil improvement using biocementing in this study resulted in an effective increase in the strength of loose sand soil in salinity condition.\",\"PeriodicalId\":506254,\"journal\":{\"name\":\"IOP Conference Series: Earth and Environmental Science\",\"volume\":\"71 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Earth and Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1755-1315/1372/1/012071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种创新的土壤改良固结方法,用于提高盐碱条件下相对密度为 10%(Dr)的极松散砂土的抗剪强度。盐碱土中的盐分会破坏稳定土壤的稳定性。相反,含盐量会降低不稳定土壤的均质化水平,造成石灰性土壤的技术问题,并影响其稳定性,尤其是当含盐量超过 3.0% 时。盐度的变化可以决定稳定土壤中盐含量的最佳比例。在盐碱土壤中应用生物固化技术,可大幅提高沿海地区因地震可能发生液化的土壤的抗剪强度。在微生物诱导生物固结过程中的碳酸钙沉积(MICP)是一种利用微生物代谢过程的新方法,本研究利用芽孢杆菌(Bacillus sp.)在 MICP 过程中,微生物需要从粉煤灰中获得 Ca2+ 离子,从而产生 SiO2 和 CaO,生成 CaCO3,用于颗粒之间的结合。土壤改良是通过将初始土壤、粉煤灰、霉菌和盐度变化(从氯化钠中获取)结合起来进行的,盐度变化的百分比分别为 0%、1%、2% 和 3.4%,在固化 7、14、21 和 28 天后进行测试。UCS 和直接剪切试验的研究样本表明,经过处理的剪切强度和 UC 强度都有所提高。在盐度为 3.4% 的情况下,剪切强度的提高幅度最大,28 天时的剪切强度为 80.9°。从扫描电镜测试结果可以看出,生物固结反应中颗粒之间的结合产生了 CaCO3。在这项研究中,使用生物固结法改良土壤可有效提高松散砂土在盐度条件下的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The influence of variations in salinity levels on the biocementing process on soil improvement of liquefaction potential
This article presents an innovative method of soil improvement cementing to increase the shearing strength of very loose sand with 10% relative density (Dr) in saline conditions. Salt in saline soils destroys the stability of stable soils. In contrast, the salt content reduces the level of homogenization of unstable soils, causes technical problems in calcareous soils, and affects their stability, especially if the salt content is more than 3.0%. The variations in salinity levels can determine the optimal percentage of salt levels in the stabilized soil. The application of biocementation to saline soil can drastically increase the shear strength of soil in soil with potential liquefaction in coastal areas due to earthquakes. Calcium carbonate deposition (MICP) in the microbial-induced biocementing process is a new method that utilizes the metabolic processes of microorganisms in this study using Bacillus sp. In the MICP process, microbes need Ca2+ ions obtained from fly ash, which can produce SiO2 and CaO to produce CaCO3 for binding between particles. Soil improvement was carried out by combining initial soil, fly ash, mycobacteria, and variations in salinity obtained from NaCl with varying percentages of 0%, 1%, 2%, and 3,4% after testing at curing times 7, 14, 21, and 28 days. The research samples from the UCS and direct shear tests showed that the shear and UC strength that were treated increased. The highest increase in shear strength was at 3,4% salinity at 28 days of 80.9°. CaCO3 production resulting from the binding between particles in the biocementing reaction can be seen from the results of SEM tests. Soil improvement using biocementing in this study resulted in an effective increase in the strength of loose sand soil in salinity condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation on solidification process of molten salt-based phase change material as thermal energy storage medium for application in Stirling engine Hydrogen adsorption on titanium-decorated carbyne C12 ring: a DFT study Experimental investigation into the effects of endplate designs for a Savonius turbine Development of zwitterion-functionalized graphene oxide/polyethersulfone nanocomposite membrane and fouling evaluation using solutes of varying charges Wind resource assessment for turbine class identification in Bayanzhaganxiang, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1