利用机器学习预测静脉体外膜氧合患者的神经损伤:ELSO 登记分析

Andrew Kalra BS , Preetham Bachina BS , Benjamin L. Shou BS , Jaeho Hwang MD , Meylakh Barshay BA , Shreyas Kulkarni BS , Isaac Sears BS , Carsten Eickhoff PhD , Christian A. Bermudez MD , Daniel Brodie MD , Corey E. Ventetuolo MD, MS , Glenn J.R. Whitman MD , Adeel Abbasi MD, ScM , Sung-Min Cho DO, MHS
{"title":"利用机器学习预测静脉体外膜氧合患者的神经损伤:ELSO 登记分析","authors":"Andrew Kalra BS ,&nbsp;Preetham Bachina BS ,&nbsp;Benjamin L. Shou BS ,&nbsp;Jaeho Hwang MD ,&nbsp;Meylakh Barshay BA ,&nbsp;Shreyas Kulkarni BS ,&nbsp;Isaac Sears BS ,&nbsp;Carsten Eickhoff PhD ,&nbsp;Christian A. Bermudez MD ,&nbsp;Daniel Brodie MD ,&nbsp;Corey E. Ventetuolo MD, MS ,&nbsp;Glenn J.R. Whitman MD ,&nbsp;Adeel Abbasi MD, ScM ,&nbsp;Sung-Min Cho DO, MHS","doi":"10.1016/j.xjon.2024.06.013","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Venovenous extracorporeal membrane oxygenation (VV-ECMO) is associated with acute brain injury (ABI), including central nervous system (CNS) ischemia (defined as ischemic stroke or hypoxic-ischemic brain injury [HIBI]) and intracranial hemorrhage (ICH). Data on prediction models for neurologic outcomes in VV-ECMO are limited.</div></div><div><h3>Methods</h3><div>We analyzed adult (age ≥18 years) VV-ECMO patients in the Extracorporeal Life Support Organization (ELSO) Registry (2009-2021) from 676 centers. ABI was defined as CNS ischemia, ICH, brain death, and seizures. Data on 67 variables were extracted, including clinical characteristics and pre-ECMO/on-ECMO variables. Random forest, CatBoost, LightGBM, and XGBoost machine learning (ML) algorithms (10-fold leave-one-out cross-validation) were used to predict ABI. Feature importance scores were used to pinpoint the most important variables for predicting ABI.</div></div><div><h3>Results</h3><div>Of 37,473 VV-ECMO patients (median age, 48.1 years; 63% male), 2644 (7.1%) experienced ABI, including 610 (2%) with CNS ischemia and 1591 (4%) with ICH. The areas under the receiver operating characteristic curve for predicting ABI, CNS ischemia, and ICH were 0.70, 0.68, and 0.70, respectively. The accuracy, positive predictive value, and negative predictive value for ABI were 85%, 19%, and 95%, respectively. ML identified higher center volume, pre-ECMO cardiac arrest, higher ECMO pump flow, and elevated on-ECMO serum lactate level as the most important risk factors for ABI and its subtypes.</div></div><div><h3>Conclusions</h3><div>This is the largest study of VV-ECMO patients to use ML to predict ABI reported to date. Performance was suboptimal, likely due to lack of standardization of neuromonitoring/imaging protocols and data granularity in the ELSO Registry. Standardized neurologic monitoring and imaging are needed across ELSO centers to detect the true prevalence of ABI.</div></div>","PeriodicalId":74032,"journal":{"name":"JTCVS open","volume":"21 ","pages":"Pages 140-167"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using machine learning to predict neurologic injury in venovenous extracorporeal membrane oxygenation recipients: An ELSO Registry analysis\",\"authors\":\"Andrew Kalra BS ,&nbsp;Preetham Bachina BS ,&nbsp;Benjamin L. Shou BS ,&nbsp;Jaeho Hwang MD ,&nbsp;Meylakh Barshay BA ,&nbsp;Shreyas Kulkarni BS ,&nbsp;Isaac Sears BS ,&nbsp;Carsten Eickhoff PhD ,&nbsp;Christian A. Bermudez MD ,&nbsp;Daniel Brodie MD ,&nbsp;Corey E. Ventetuolo MD, MS ,&nbsp;Glenn J.R. Whitman MD ,&nbsp;Adeel Abbasi MD, ScM ,&nbsp;Sung-Min Cho DO, MHS\",\"doi\":\"10.1016/j.xjon.2024.06.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Venovenous extracorporeal membrane oxygenation (VV-ECMO) is associated with acute brain injury (ABI), including central nervous system (CNS) ischemia (defined as ischemic stroke or hypoxic-ischemic brain injury [HIBI]) and intracranial hemorrhage (ICH). Data on prediction models for neurologic outcomes in VV-ECMO are limited.</div></div><div><h3>Methods</h3><div>We analyzed adult (age ≥18 years) VV-ECMO patients in the Extracorporeal Life Support Organization (ELSO) Registry (2009-2021) from 676 centers. ABI was defined as CNS ischemia, ICH, brain death, and seizures. Data on 67 variables were extracted, including clinical characteristics and pre-ECMO/on-ECMO variables. Random forest, CatBoost, LightGBM, and XGBoost machine learning (ML) algorithms (10-fold leave-one-out cross-validation) were used to predict ABI. Feature importance scores were used to pinpoint the most important variables for predicting ABI.</div></div><div><h3>Results</h3><div>Of 37,473 VV-ECMO patients (median age, 48.1 years; 63% male), 2644 (7.1%) experienced ABI, including 610 (2%) with CNS ischemia and 1591 (4%) with ICH. The areas under the receiver operating characteristic curve for predicting ABI, CNS ischemia, and ICH were 0.70, 0.68, and 0.70, respectively. The accuracy, positive predictive value, and negative predictive value for ABI were 85%, 19%, and 95%, respectively. ML identified higher center volume, pre-ECMO cardiac arrest, higher ECMO pump flow, and elevated on-ECMO serum lactate level as the most important risk factors for ABI and its subtypes.</div></div><div><h3>Conclusions</h3><div>This is the largest study of VV-ECMO patients to use ML to predict ABI reported to date. Performance was suboptimal, likely due to lack of standardization of neuromonitoring/imaging protocols and data granularity in the ELSO Registry. Standardized neurologic monitoring and imaging are needed across ELSO centers to detect the true prevalence of ABI.</div></div>\",\"PeriodicalId\":74032,\"journal\":{\"name\":\"JTCVS open\",\"volume\":\"21 \",\"pages\":\"Pages 140-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JTCVS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666273624001736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTCVS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666273624001736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景静脉体外膜氧合(VV-ECMO)与急性脑损伤(ABI)有关,包括中枢神经系统(CNS)缺血(定义为缺血性卒中或缺氧缺血性脑损伤[HIBI])和颅内出血(ICH)。我们分析了体外生命支持组织(ELSO)登记处(2009-2021 年)中来自 676 个中心的成人(年龄≥18 岁)VV-ECMO 患者。ABI定义为中枢神经系统缺血、ICH、脑死亡和癫痫发作。提取了67个变量的数据,包括临床特征和ECMO前/ECMO上变量。采用随机森林、CatBoost、LightGBM 和 XGBoost 机器学习(ML)算法(10 倍留一交叉验证)预测 ABI。结果 在 37,473 例 VV-ECMO 患者(中位年龄 48.1 岁;63% 为男性)中,2644 例(7.1%)出现 ABI,其中 610 例(2%)伴有中枢神经系统缺血,1591 例(4%)伴有 ICH。预测 ABI、中枢神经系统缺血和 ICH 的接收器操作特征曲线下面积分别为 0.70、0.68 和 0.70。ABI 的准确率、阳性预测值和阴性预测值分别为 85%、19% 和 95%。ML将较高的中心容量、ECMO前心脏骤停、较高的ECMO泵流量和ECMO时血清乳酸水平升高确定为ABI及其亚型的最重要风险因素。可能是由于 ELSO 登记处的神经监测/成像方案和数据粒度缺乏标准化,该研究的效果并不理想。各 ELSO 中心需要进行标准化的神经监测和成像,以检测 ABI 的真实发生率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using machine learning to predict neurologic injury in venovenous extracorporeal membrane oxygenation recipients: An ELSO Registry analysis

Background

Venovenous extracorporeal membrane oxygenation (VV-ECMO) is associated with acute brain injury (ABI), including central nervous system (CNS) ischemia (defined as ischemic stroke or hypoxic-ischemic brain injury [HIBI]) and intracranial hemorrhage (ICH). Data on prediction models for neurologic outcomes in VV-ECMO are limited.

Methods

We analyzed adult (age ≥18 years) VV-ECMO patients in the Extracorporeal Life Support Organization (ELSO) Registry (2009-2021) from 676 centers. ABI was defined as CNS ischemia, ICH, brain death, and seizures. Data on 67 variables were extracted, including clinical characteristics and pre-ECMO/on-ECMO variables. Random forest, CatBoost, LightGBM, and XGBoost machine learning (ML) algorithms (10-fold leave-one-out cross-validation) were used to predict ABI. Feature importance scores were used to pinpoint the most important variables for predicting ABI.

Results

Of 37,473 VV-ECMO patients (median age, 48.1 years; 63% male), 2644 (7.1%) experienced ABI, including 610 (2%) with CNS ischemia and 1591 (4%) with ICH. The areas under the receiver operating characteristic curve for predicting ABI, CNS ischemia, and ICH were 0.70, 0.68, and 0.70, respectively. The accuracy, positive predictive value, and negative predictive value for ABI were 85%, 19%, and 95%, respectively. ML identified higher center volume, pre-ECMO cardiac arrest, higher ECMO pump flow, and elevated on-ECMO serum lactate level as the most important risk factors for ABI and its subtypes.

Conclusions

This is the largest study of VV-ECMO patients to use ML to predict ABI reported to date. Performance was suboptimal, likely due to lack of standardization of neuromonitoring/imaging protocols and data granularity in the ELSO Registry. Standardized neurologic monitoring and imaging are needed across ELSO centers to detect the true prevalence of ABI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Repair of acute type A aortic dissection: The simplest solution is not always the best Are there etiology-specific risk factors for adverse outcomes in patients on Impella 5.5 support? Type B aortic dissection in Marfan patients after the David procedure: Insights from patient-specific simulation Reoperation after aortic root replacement and its impact on long-term survival Should we wait until the morning?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1