评估和改进船舶运行性能的新方法

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE International Journal of Naval Architecture and Ocean Engineering Pub Date : 2024-01-01 DOI:10.1016/j.ijnaoe.2024.100607
Thai Gia Tran , Hyun Cheol Kim
{"title":"评估和改进船舶运行性能的新方法","authors":"Thai Gia Tran ,&nbsp;Hyun Cheol Kim","doi":"10.1016/j.ijnaoe.2024.100607","DOIUrl":null,"url":null,"abstract":"<div><p>The deterioration in the technical conditions of the main engine, hull, and propeller over time in service is natural and causes adverse effects on ship operating performance, so determining and overcoming this phenomenon is necessary. However, effectively solving this problem is not simple because it is affected by many complex and random factors such as engine deterioration, increased roughness of hull and propeller surfaces, changes in sea state and ship load, etc. In this study, our new approach based on the black-box method and detailed propeller diagrams provides an effective way to assess and improve ship performance both under specific operating conditions and after a period of service. This method was verified and validated with the test data of the Glory Star oil tanker and applied to the Duong River dry cargo ship in Vietnam to determine its performance degradation and provide solutions to overcome this problem. The results showed that after 5 years out of dry dock, the study ship's performance or propulsion efficiency was reduced by about 8.6%, resulting in an increase in fuel consumption of about 6.5% and a decrease in ship speed of about 14.7%. By applying technical solutions such as tuning the engine operating mode and choosing a practical propeller design point, the performance of this ship was greatly improved and brought about high economic and technical efficiency. Especially, the cutting of the propeller edges not only solved the torque-rich phenomena occurring on the study ship's main engine after 5 service years, but also saved 5.1% and 4.9% in hourly fuel consumption, and increased 3.9% and 4.9% in ship speed, calculated for ballast and full load sea trials, respectively.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100607"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000268/pdfft?md5=2786f4b817f939e20c8f704c8f58cf58&pid=1-s2.0-S2092678224000268-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New approaches to assess and improve ship operating performance\",\"authors\":\"Thai Gia Tran ,&nbsp;Hyun Cheol Kim\",\"doi\":\"10.1016/j.ijnaoe.2024.100607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The deterioration in the technical conditions of the main engine, hull, and propeller over time in service is natural and causes adverse effects on ship operating performance, so determining and overcoming this phenomenon is necessary. However, effectively solving this problem is not simple because it is affected by many complex and random factors such as engine deterioration, increased roughness of hull and propeller surfaces, changes in sea state and ship load, etc. In this study, our new approach based on the black-box method and detailed propeller diagrams provides an effective way to assess and improve ship performance both under specific operating conditions and after a period of service. This method was verified and validated with the test data of the Glory Star oil tanker and applied to the Duong River dry cargo ship in Vietnam to determine its performance degradation and provide solutions to overcome this problem. The results showed that after 5 years out of dry dock, the study ship's performance or propulsion efficiency was reduced by about 8.6%, resulting in an increase in fuel consumption of about 6.5% and a decrease in ship speed of about 14.7%. By applying technical solutions such as tuning the engine operating mode and choosing a practical propeller design point, the performance of this ship was greatly improved and brought about high economic and technical efficiency. Especially, the cutting of the propeller edges not only solved the torque-rich phenomena occurring on the study ship's main engine after 5 service years, but also saved 5.1% and 4.9% in hourly fuel consumption, and increased 3.9% and 4.9% in ship speed, calculated for ballast and full load sea trials, respectively.</p></div>\",\"PeriodicalId\":14160,\"journal\":{\"name\":\"International Journal of Naval Architecture and Ocean Engineering\",\"volume\":\"16 \",\"pages\":\"Article 100607\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2092678224000268/pdfft?md5=2786f4b817f939e20c8f704c8f58cf58&pid=1-s2.0-S2092678224000268-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Naval Architecture and Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2092678224000268\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000268","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

随着服役时间的推移,主机、船体和螺旋桨的技术状况自然会出现恶化,并对船舶运行性能造成不利影响,因此有必要确定并克服这一现象。然而,有效解决这一问题并不简单,因为它受到许多复杂和随机因素的影响,如发动机劣化、船体和螺旋桨表面粗糙度增加、海况和船舶载荷变化等。在这项研究中,我们基于黑箱法和详细螺旋桨图的新方法为评估和改进船舶在特定运行条件下和服役一段时间后的性能提供了有效途径。该方法通过 "光辉之星 "号油轮的测试数据进行了验证和确认,并应用于越南的 Duong River 号干货船,以确定其性能下降情况,并提供克服这一问题的解决方案。结果显示,在干船坞停靠 5 年后,研究船的性能或推进效率降低了约 8.6%,导致油耗增加约 6.5%,船速降低约 14.7%。通过调整发动机工作模式、选择切实可行的螺旋桨设计点等技术方案,该船的性能大大提高,带来了较高的经济技术效益。特别是对螺旋桨边缘进行切割,不仅解决了研究船主机服役 5 年后出现的扭矩过大现象,而且按压载和满载海试计算,每小时油耗分别节省了 5.1%和 4.9%,船速分别提高了 3.9%和 4.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New approaches to assess and improve ship operating performance

The deterioration in the technical conditions of the main engine, hull, and propeller over time in service is natural and causes adverse effects on ship operating performance, so determining and overcoming this phenomenon is necessary. However, effectively solving this problem is not simple because it is affected by many complex and random factors such as engine deterioration, increased roughness of hull and propeller surfaces, changes in sea state and ship load, etc. In this study, our new approach based on the black-box method and detailed propeller diagrams provides an effective way to assess and improve ship performance both under specific operating conditions and after a period of service. This method was verified and validated with the test data of the Glory Star oil tanker and applied to the Duong River dry cargo ship in Vietnam to determine its performance degradation and provide solutions to overcome this problem. The results showed that after 5 years out of dry dock, the study ship's performance or propulsion efficiency was reduced by about 8.6%, resulting in an increase in fuel consumption of about 6.5% and a decrease in ship speed of about 14.7%. By applying technical solutions such as tuning the engine operating mode and choosing a practical propeller design point, the performance of this ship was greatly improved and brought about high economic and technical efficiency. Especially, the cutting of the propeller edges not only solved the torque-rich phenomena occurring on the study ship's main engine after 5 service years, but also saved 5.1% and 4.9% in hourly fuel consumption, and increased 3.9% and 4.9% in ship speed, calculated for ballast and full load sea trials, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
期刊最新文献
A fundamental study on structural strength assessment of U-bolts for expanded application to shipbuilding and offshore piping systems A numerical study on the feasibility of predicting the resistance of a full-scale ship using a virtual fluid A novel formula for predicting the ultimate compressive strength of the cylindrically curved plates A numerical study of added resistance performance and hydrodynamics of KCS hull in oblique regular waves and estimation of resistance in short-crested irregular waves through spectral method Evaluation of subgrid scale models in turbulent large eddy simulations of pumpjet propulsor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1