利用矩阵编码遗传算法实现异构代理模型的合作目标分配

Shan Gao , Lei Zuo , Xiaofei Lu , Bo Tang
{"title":"利用矩阵编码遗传算法实现异构代理模型的合作目标分配","authors":"Shan Gao ,&nbsp;Lei Zuo ,&nbsp;Xiaofei Lu ,&nbsp;Bo Tang","doi":"10.1016/j.jiixd.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Heterogeneous platforms collaborate to execute tasks through different operational models, resulting in the task allocation problem that incorporates different agent models. In this paper, we address the problem of cooperative target allocation for heterogeneous agent models, where we design the task-agent matching model and the multi-agent routing model. Since the heterogeneity and cooperativity of agent models lead to a coupled allocation problem, we propose a matrix-encoding genetic algorithm (MEGA) to plan reliable allocation schemes. Specifically, an integer matrix encoding is resorted to represent the priority between targets and agents in MEGA and a ranking rule is designed to decode the priority matrix. Based on the proposed encoding-decoding framework, we use the discrete and continuous optimization operators to update the target-agent match pairs and task execution orders. In addition, to adaptively balance the diversity and intensification of the population, a dynamical supplement strategy based on Hamming distance is proposed. This strategy adds individuals with different diversity and fitness at different stages of the optimization process. Finally, simulation experiments show that MEGA algorithm outperforms the conventional target allocation algorithms in the heterogeneous agent scenario.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 2","pages":"Pages 154-172"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative target allocation for heterogeneous agent models using a matrix-encoding genetic algorithm\",\"authors\":\"Shan Gao ,&nbsp;Lei Zuo ,&nbsp;Xiaofei Lu ,&nbsp;Bo Tang\",\"doi\":\"10.1016/j.jiixd.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heterogeneous platforms collaborate to execute tasks through different operational models, resulting in the task allocation problem that incorporates different agent models. In this paper, we address the problem of cooperative target allocation for heterogeneous agent models, where we design the task-agent matching model and the multi-agent routing model. Since the heterogeneity and cooperativity of agent models lead to a coupled allocation problem, we propose a matrix-encoding genetic algorithm (MEGA) to plan reliable allocation schemes. Specifically, an integer matrix encoding is resorted to represent the priority between targets and agents in MEGA and a ranking rule is designed to decode the priority matrix. Based on the proposed encoding-decoding framework, we use the discrete and continuous optimization operators to update the target-agent match pairs and task execution orders. In addition, to adaptively balance the diversity and intensification of the population, a dynamical supplement strategy based on Hamming distance is proposed. This strategy adds individuals with different diversity and fitness at different stages of the optimization process. Finally, simulation experiments show that MEGA algorithm outperforms the conventional target allocation algorithms in the heterogeneous agent scenario.</div></div>\",\"PeriodicalId\":100790,\"journal\":{\"name\":\"Journal of Information and Intelligence\",\"volume\":\"3 2\",\"pages\":\"Pages 154-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949715924000659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715924000659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperative target allocation for heterogeneous agent models using a matrix-encoding genetic algorithm
Heterogeneous platforms collaborate to execute tasks through different operational models, resulting in the task allocation problem that incorporates different agent models. In this paper, we address the problem of cooperative target allocation for heterogeneous agent models, where we design the task-agent matching model and the multi-agent routing model. Since the heterogeneity and cooperativity of agent models lead to a coupled allocation problem, we propose a matrix-encoding genetic algorithm (MEGA) to plan reliable allocation schemes. Specifically, an integer matrix encoding is resorted to represent the priority between targets and agents in MEGA and a ranking rule is designed to decode the priority matrix. Based on the proposed encoding-decoding framework, we use the discrete and continuous optimization operators to update the target-agent match pairs and task execution orders. In addition, to adaptively balance the diversity and intensification of the population, a dynamical supplement strategy based on Hamming distance is proposed. This strategy adds individuals with different diversity and fitness at different stages of the optimization process. Finally, simulation experiments show that MEGA algorithm outperforms the conventional target allocation algorithms in the heterogeneous agent scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Editorial Board Boosting brain-computer interface performance through cognitive training: A brain-centric approach Hand-aware graph convolution network for skeleton-based sign language recognition Composite fixed-length ordered features with index-of-max transformation for high-performing and secure palmprint template protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1