不同传热距离和结构的氮气脉动热管实验研究

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED Cryogenics Pub Date : 2024-07-01 DOI:10.1016/j.cryogenics.2024.103898
{"title":"不同传热距离和结构的氮气脉动热管实验研究","authors":"","doi":"10.1016/j.cryogenics.2024.103898","DOIUrl":null,"url":null,"abstract":"<div><p>The heat transfer performance of nitrogen PHPs with different heat transmission distances (100 mm and 500 mm) and tube configurations (single-loop and complex-loop) were experimentally investigated. Experiments were conducted in the vertical bottom heat mode with different filling ratios (15 %–70 %). The results showed that the maximum effective thermal conductivity increased proportionally with the heat transmission distance whereas the thermal resistance remained constant (0.2 K/W at a filling ratio of 31.8 %). This verified the outstanding long-distance heat transfer advantage of the nitrogen PHP. Experiments at different filling ratios showed that the maximum thermal conductivity decreased as the filling ratios increased. A filling ratio of 31.8 % was recommended. Under this operating condition, the PHP can load the maximum heat input while exhibiting relatively high effective thermal conductivity. Compared to the single-loop configuration, the complex-loop exhibited higher effective thermal conductivity, and this enhancement in thermal performance was more pronounced for the longer PHP.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on nitrogen pulsating heat pipes with different heat transmission distances and configurations\",\"authors\":\"\",\"doi\":\"10.1016/j.cryogenics.2024.103898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The heat transfer performance of nitrogen PHPs with different heat transmission distances (100 mm and 500 mm) and tube configurations (single-loop and complex-loop) were experimentally investigated. Experiments were conducted in the vertical bottom heat mode with different filling ratios (15 %–70 %). The results showed that the maximum effective thermal conductivity increased proportionally with the heat transmission distance whereas the thermal resistance remained constant (0.2 K/W at a filling ratio of 31.8 %). This verified the outstanding long-distance heat transfer advantage of the nitrogen PHP. Experiments at different filling ratios showed that the maximum thermal conductivity decreased as the filling ratios increased. A filling ratio of 31.8 % was recommended. Under this operating condition, the PHP can load the maximum heat input while exhibiting relatively high effective thermal conductivity. Compared to the single-loop configuration, the complex-loop exhibited higher effective thermal conductivity, and this enhancement in thermal performance was more pronounced for the longer PHP.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001188\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001188","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了不同传热距离(100 毫米和 500 毫米)和管子结构(单回路和复回路)的氮气 PHP 的传热性能。实验在不同填充率(15%-70%)的垂直底部热模式下进行。结果表明,最大有效热导率随传热距离成比例增加,而热阻保持不变(填充率为 31.8 % 时为 0.2 K/W)。这验证了氮PHP 杰出的长距离传热优势。不同填充率下的实验表明,最大热导率随着填充率的增加而降低。建议填充率为 31.8%。在这一工作条件下,PHP 可以负载最大热输入,同时表现出相对较高的有效热传导率。与单回路配置相比,复合回路显示出更高的有效热传导率,这种热性能的提高在较长的 PHP 中更为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on nitrogen pulsating heat pipes with different heat transmission distances and configurations

The heat transfer performance of nitrogen PHPs with different heat transmission distances (100 mm and 500 mm) and tube configurations (single-loop and complex-loop) were experimentally investigated. Experiments were conducted in the vertical bottom heat mode with different filling ratios (15 %–70 %). The results showed that the maximum effective thermal conductivity increased proportionally with the heat transmission distance whereas the thermal resistance remained constant (0.2 K/W at a filling ratio of 31.8 %). This verified the outstanding long-distance heat transfer advantage of the nitrogen PHP. Experiments at different filling ratios showed that the maximum thermal conductivity decreased as the filling ratios increased. A filling ratio of 31.8 % was recommended. Under this operating condition, the PHP can load the maximum heat input while exhibiting relatively high effective thermal conductivity. Compared to the single-loop configuration, the complex-loop exhibited higher effective thermal conductivity, and this enhancement in thermal performance was more pronounced for the longer PHP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
期刊最新文献
Cryogenic thermosiphon used for indirect cooling of superconducting magnets Progress in measuring techniques and thermal radiative properties of metals at cryogenic temperatures: A review Delamination analysis of the epoxy impregnated REBCO racetrack coil under thermal stress based on a 3D model Enhancing dynamic stability of HTS maglev systems with preloading method Diffusive solubility of nitrogen in Propane: Measurement from 96 K to 227 K at 0.1 MPa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1