通过 Xception 和 Inception-v3 使用转换器和图像特征提取技术制作图像标题

Jasman Pardede, Fandi Ahmad
{"title":"通过 Xception 和 Inception-v3 使用转换器和图像特征提取技术制作图像标题","authors":"Jasman Pardede, Fandi Ahmad","doi":"10.21107/kursor.v12i3.376","DOIUrl":null,"url":null,"abstract":"Image captioning is a task in image processing that involves creating text descriptions that can describe the image content. The formation of the image captioning system model is influenced by image interpretation related to the given image caption. Image interpretation is influenced by the feature extraction used. This research proposes feature extraction with Xception and Inception-V3 by generating an image captioning model using Transformer. Model performance is measured based on BLUE and METEOR values. Based on the results of research conducted on the Flickr8k Dataset, it shows that the best model performance is using Xception feature extraction and batch_size = 256. The image captioning performance of Xception feature extraction for BLUE-1, BLUE-2, BLUE-3, BLUE-4, and METEOR when compared with Inception-V3 achieves increasing of 13.15%, 18.03%, 18.71%, 27.27%, and 15.43% respectively. The performance for Xception feature extraction with batch_size = 256 compared with batch_size = 128, increasing BLUE-1, BLUE-2, BLUE-3, BLUE-4, and METEOR namely 19.81%, 41.84%, 52.23%, 53.14%, and 31.56% respectively.","PeriodicalId":504317,"journal":{"name":"Jurnal Ilmiah Kursor","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMAGE CAPTIONING USING TRANSFORMER WITH IMAGE FEATURE EXTRACTION BY XCEPTION AND INCEPTION-V3\",\"authors\":\"Jasman Pardede, Fandi Ahmad\",\"doi\":\"10.21107/kursor.v12i3.376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image captioning is a task in image processing that involves creating text descriptions that can describe the image content. The formation of the image captioning system model is influenced by image interpretation related to the given image caption. Image interpretation is influenced by the feature extraction used. This research proposes feature extraction with Xception and Inception-V3 by generating an image captioning model using Transformer. Model performance is measured based on BLUE and METEOR values. Based on the results of research conducted on the Flickr8k Dataset, it shows that the best model performance is using Xception feature extraction and batch_size = 256. The image captioning performance of Xception feature extraction for BLUE-1, BLUE-2, BLUE-3, BLUE-4, and METEOR when compared with Inception-V3 achieves increasing of 13.15%, 18.03%, 18.71%, 27.27%, and 15.43% respectively. The performance for Xception feature extraction with batch_size = 256 compared with batch_size = 128, increasing BLUE-1, BLUE-2, BLUE-3, BLUE-4, and METEOR namely 19.81%, 41.84%, 52.23%, 53.14%, and 31.56% respectively.\",\"PeriodicalId\":504317,\"journal\":{\"name\":\"Jurnal Ilmiah Kursor\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah Kursor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21107/kursor.v12i3.376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Kursor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/kursor.v12i3.376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像标题是图像处理中的一项任务,涉及创建能够描述图像内容的文字说明。图像标题系统模型的形成受到与给定图像标题相关的图像解读的影响。图像解读受所用特征提取的影响。本研究建议使用 Xception 和 Inception-V3 进行特征提取,并使用 Transformer 生成图像标题模型。模型性能根据 BLUE 和 METEOR 值进行测量。基于 Flickr8k 数据集的研究结果表明,使用 Xception 特征提取和 batch_size = 256 的模型性能最佳。与 Inception-V3 相比,Xception 特征提取对 BLUE-1、BLUE-2、BLUE-3、BLUE-4 和 METEOR 的图像标题处理性能分别提高了 13.15%、18.03%、18.71%、27.27% 和 15.43%。批量大小为 256 的 Xception 特征提取与批量大小为 128 的 Xception 特征提取相比,BLUE-1、BLUE-2、BLUE-3、BLUE-4 和 METEOR 的性能分别提高了 19.81%、41.84%、52.23%、53.14% 和 31.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMAGE CAPTIONING USING TRANSFORMER WITH IMAGE FEATURE EXTRACTION BY XCEPTION AND INCEPTION-V3
Image captioning is a task in image processing that involves creating text descriptions that can describe the image content. The formation of the image captioning system model is influenced by image interpretation related to the given image caption. Image interpretation is influenced by the feature extraction used. This research proposes feature extraction with Xception and Inception-V3 by generating an image captioning model using Transformer. Model performance is measured based on BLUE and METEOR values. Based on the results of research conducted on the Flickr8k Dataset, it shows that the best model performance is using Xception feature extraction and batch_size = 256. The image captioning performance of Xception feature extraction for BLUE-1, BLUE-2, BLUE-3, BLUE-4, and METEOR when compared with Inception-V3 achieves increasing of 13.15%, 18.03%, 18.71%, 27.27%, and 15.43% respectively. The performance for Xception feature extraction with batch_size = 256 compared with batch_size = 128, increasing BLUE-1, BLUE-2, BLUE-3, BLUE-4, and METEOR namely 19.81%, 41.84%, 52.23%, 53.14%, and 31.56% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMAGE CAPTIONING USING TRANSFORMER WITH IMAGE FEATURE EXTRACTION BY XCEPTION AND INCEPTION-V3 DEEP LEARNING ARCHITECTURE BASED ON CONVOLUTIONAL NEURAL NETWORK (CNN) IN IMAGE CLASSIFICATION LONG SHORT-TERM MEMORY FOR PREDICTION OF WAVE HEIGHT AND WIND SPEED USING PROPHET FOR OUTLIERS SHORT-TERM FORECASTING DAILY ELECTRICITY LOADS USING SEASONAL ARIMA PATTERNS OF GENERATION UNITS AT PT. PLN (PERSERO) TARAKAN CITY OPTIMIZING LANTANA CLASSIFICATION: HIGH-ACCURACY MODEL UTILIZING FEATURE EXTRACTION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1