利用深度学习模型检测阿尔茨海默病:系统性文献综述

Eqtidar M. Mohammed , Ahmed M. Fakhrudeen , Omar Younis Alani
{"title":"利用深度学习模型检测阿尔茨海默病:系统性文献综述","authors":"Eqtidar M. Mohammed ,&nbsp;Ahmed M. Fakhrudeen ,&nbsp;Omar Younis Alani","doi":"10.1016/j.imu.2024.101551","DOIUrl":null,"url":null,"abstract":"<div><p>Alzheimer's disease (AD) is a progressive neurological disease considered the most common form of late-stage dementia. Usually, AD leads to a reduction in brain volume, impacting various functions. This article comprehensively analyzes the AD context in fivefold main topics. Firstly, it reviews the main imaging techniques used in diagnosing AD disease. Secondly, it explores the most proposed deep learning (DL) algorithms for detecting the disease. Thirdly, the article investigates the commonly used datasets to develop DL techniques. Fourthly, we conducted a systematic review and selected 45 papers published in highly ranked publishers (Science Direct, IEEE, Springer, and MDPI). We analyzed them thoroughly by delving into the stages of AD diagnosis and emphasizing the role of preprocessing techniques. Lastly, the paper addresses the remaining practical implications and challenges in the AD context. Building on the analysis, this survey contributes to covering several aspects related to AD disease that have not been studied thoroughly.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"50 ","pages":"Article 101551"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824001072/pdfft?md5=7db39c49a1c80d680ed4e5967260663c&pid=1-s2.0-S2352914824001072-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection of Alzheimer's disease using deep learning models: A systematic literature review\",\"authors\":\"Eqtidar M. Mohammed ,&nbsp;Ahmed M. Fakhrudeen ,&nbsp;Omar Younis Alani\",\"doi\":\"10.1016/j.imu.2024.101551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alzheimer's disease (AD) is a progressive neurological disease considered the most common form of late-stage dementia. Usually, AD leads to a reduction in brain volume, impacting various functions. This article comprehensively analyzes the AD context in fivefold main topics. Firstly, it reviews the main imaging techniques used in diagnosing AD disease. Secondly, it explores the most proposed deep learning (DL) algorithms for detecting the disease. Thirdly, the article investigates the commonly used datasets to develop DL techniques. Fourthly, we conducted a systematic review and selected 45 papers published in highly ranked publishers (Science Direct, IEEE, Springer, and MDPI). We analyzed them thoroughly by delving into the stages of AD diagnosis and emphasizing the role of preprocessing techniques. Lastly, the paper addresses the remaining practical implications and challenges in the AD context. Building on the analysis, this survey contributes to covering several aspects related to AD disease that have not been studied thoroughly.</p></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"50 \",\"pages\":\"Article 101551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352914824001072/pdfft?md5=7db39c49a1c80d680ed4e5967260663c&pid=1-s2.0-S2352914824001072-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914824001072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824001072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种渐进性神经系统疾病,被认为是最常见的晚期痴呆症。通常,阿尔茨海默病会导致脑容量减少,影响各种功能。本文从五个方面全面分析了老年痴呆症的背景。首先,文章回顾了用于诊断 AD 疾病的主要成像技术。其次,文章探讨了用于检测该疾病的最常用的深度学习(DL)算法。第三,文章研究了开发深度学习技术的常用数据集。第四,我们进行了系统性回顾,并选择了在排名较高的出版商(Science Direct、IEEE、Springer 和 MDPI)上发表的 45 篇论文。通过深入研究 AD 诊断的各个阶段,我们对这些论文进行了全面分析,并强调了预处理技术的作用。最后,本文论述了注意力缺失方面的其他实际影响和挑战。在分析的基础上,本调查报告有助于涵盖与注意力缺失症疾病相关的几个尚未深入研究的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Alzheimer's disease using deep learning models: A systematic literature review

Alzheimer's disease (AD) is a progressive neurological disease considered the most common form of late-stage dementia. Usually, AD leads to a reduction in brain volume, impacting various functions. This article comprehensively analyzes the AD context in fivefold main topics. Firstly, it reviews the main imaging techniques used in diagnosing AD disease. Secondly, it explores the most proposed deep learning (DL) algorithms for detecting the disease. Thirdly, the article investigates the commonly used datasets to develop DL techniques. Fourthly, we conducted a systematic review and selected 45 papers published in highly ranked publishers (Science Direct, IEEE, Springer, and MDPI). We analyzed them thoroughly by delving into the stages of AD diagnosis and emphasizing the role of preprocessing techniques. Lastly, the paper addresses the remaining practical implications and challenges in the AD context. Building on the analysis, this survey contributes to covering several aspects related to AD disease that have not been studied thoroughly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1