表面重构层与块状高价钼掺杂实现长寿命锰酸锂正极材料

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-07-11 DOI:10.1016/j.electacta.2024.144706
{"title":"表面重构层与块状高价钼掺杂实现长寿命锰酸锂正极材料","authors":"","doi":"10.1016/j.electacta.2024.144706","DOIUrl":null,"url":null,"abstract":"<div><p>Mo doping plays a striking role in the stability enhancement of LiMn<sub>2</sub>O<sub>4</sub> cathode materials. However, the underlying microscopic mechanism is still unclear. Here, we elucidate that the relationship between the atomic position of Mo doping in LiMn<sub>2</sub>O<sub>4</sub> and the stability enhancement of Mo-doped LiMn<sub>2</sub>O<sub>4</sub> by utilizing the spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM). It exhibits that the part of Mo<sup>6+</sup> ions occupy empty Mn 16c site to form a surface reconstructed layer of rock-salt like phase on the outermost surface and other Mo<sup>6+</sup> ions dope into the Mn octahedral 16d sites to form LiMo<sub>x</sub>Mn<sub>2-x</sub>O<sub>4</sub> in bulk, which is beneficial for inhibiting the parasitic side reactions. Concomitantly, this dual modification of bulk structure and surface can significantly enhance electrode reversibility and Li<sup>+</sup> diffusion. As a result, excellent long cycling stability of the as-designed optimal LiMo<sub>0.01</sub>Mn<sub>1.99</sub>O<sub>4</sub> after 1500 cycles with 61.61 % capacity retention at 10 C (1 C = 148 mAh <em>g</em><sup>−1</sup>) is presented, with an initial discharge capacity of 88.30 mAh <em>g</em><sup>−1</sup>. Our research provides a clever approach for regulating the surface structure/bulk architecture in LiMn<sub>2</sub>O<sub>4</sub> cathode materials.</p></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface reconstructed layer with bulk high-valence Mo doping to achieve long-life LiMn2O4 cathode material\",\"authors\":\"\",\"doi\":\"10.1016/j.electacta.2024.144706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mo doping plays a striking role in the stability enhancement of LiMn<sub>2</sub>O<sub>4</sub> cathode materials. However, the underlying microscopic mechanism is still unclear. Here, we elucidate that the relationship between the atomic position of Mo doping in LiMn<sub>2</sub>O<sub>4</sub> and the stability enhancement of Mo-doped LiMn<sub>2</sub>O<sub>4</sub> by utilizing the spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM). It exhibits that the part of Mo<sup>6+</sup> ions occupy empty Mn 16c site to form a surface reconstructed layer of rock-salt like phase on the outermost surface and other Mo<sup>6+</sup> ions dope into the Mn octahedral 16d sites to form LiMo<sub>x</sub>Mn<sub>2-x</sub>O<sub>4</sub> in bulk, which is beneficial for inhibiting the parasitic side reactions. Concomitantly, this dual modification of bulk structure and surface can significantly enhance electrode reversibility and Li<sup>+</sup> diffusion. As a result, excellent long cycling stability of the as-designed optimal LiMo<sub>0.01</sub>Mn<sub>1.99</sub>O<sub>4</sub> after 1500 cycles with 61.61 % capacity retention at 10 C (1 C = 148 mAh <em>g</em><sup>−1</sup>) is presented, with an initial discharge capacity of 88.30 mAh <em>g</em><sup>−1</sup>. Our research provides a clever approach for regulating the surface structure/bulk architecture in LiMn<sub>2</sub>O<sub>4</sub> cathode materials.</p></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624009460\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624009460","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

钼掺杂在锰酸锂阴极材料稳定性的增强中发挥了显著作用。然而,其微观机制尚不清楚。在此,我们利用球差校正扫描透射电子显微镜(Cs-STEM)阐明了钼在锰酸锂中掺杂的原子位置与钼掺杂锰酸锂稳定性增强之间的关系。结果表明,一部分 Mo6+ 离子占据了空的 Mn 16c 位点,在最外层形成了类似岩盐相的表面重构层,而另一部分 Mo6+ 离子则掺入了 Mn 八面体 16d 位点,在块体中形成了 LiMoxMn2-xO4,这有利于抑制寄生副反应。同时,这种块体结构和表面的双重改性可显著提高电极的可逆性和 Li+ 扩散能力。因此,设计的最佳 LiMo0.01Mn1.99O4 在 10 C(1 C = 148 mAh g-1)的初始放电容量为 88.30 mAh g-1 的条件下,经过 1500 次循环后仍能保持 61.61 % 的容量,具有极佳的长循环稳定性。我们的研究为调节锰酸锂阴极材料的表面结构/块体结构提供了一种巧妙的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface reconstructed layer with bulk high-valence Mo doping to achieve long-life LiMn2O4 cathode material

Mo doping plays a striking role in the stability enhancement of LiMn2O4 cathode materials. However, the underlying microscopic mechanism is still unclear. Here, we elucidate that the relationship between the atomic position of Mo doping in LiMn2O4 and the stability enhancement of Mo-doped LiMn2O4 by utilizing the spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM). It exhibits that the part of Mo6+ ions occupy empty Mn 16c site to form a surface reconstructed layer of rock-salt like phase on the outermost surface and other Mo6+ ions dope into the Mn octahedral 16d sites to form LiMoxMn2-xO4 in bulk, which is beneficial for inhibiting the parasitic side reactions. Concomitantly, this dual modification of bulk structure and surface can significantly enhance electrode reversibility and Li+ diffusion. As a result, excellent long cycling stability of the as-designed optimal LiMo0.01Mn1.99O4 after 1500 cycles with 61.61 % capacity retention at 10 C (1 C = 148 mAh g−1) is presented, with an initial discharge capacity of 88.30 mAh g−1. Our research provides a clever approach for regulating the surface structure/bulk architecture in LiMn2O4 cathode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Theoretical and experimental studies on 2D β-NiS battery-type electrodes for high-performance supercapacitor Lithium fluoride additive helps construct stable electrode-electrolyte interfaces to boost the performance of Mg-S batteries Reversible storage of tetraethyl ammonium cation in CFx-based cathode Long-term dechlorination performance of the Dehalococcoides-augmented bioelectrochemical system and the functional microorganism identification Viologen derivative-induced graphene hybrid biofilms for high-performance microbial fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1