优化网络物理系统中的有效性证明

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Dependable and Secure Computing Pub Date : 2024-07-01 DOI:10.1109/TDSC.2023.3335188
Zheng Yang, Chenglu Jin, Xuelian Cao, Marten van Dijk, Jianying Zhou
{"title":"优化网络物理系统中的有效性证明","authors":"Zheng Yang, Chenglu Jin, Xuelian Cao, Marten van Dijk, Jianying Zhou","doi":"10.1109/TDSC.2023.3335188","DOIUrl":null,"url":null,"abstract":"At ACSAC 2019, we introduced a new cryptographic primitive called proof of aliveness (PoA), allowing us to remotely and automatically track the running status (aliveness) of devices in the fields in cyber-physical systems. We proposed to use a one-way function (OWF) chain structure to build an efficient proof of aliveness, such that the prover sends every node on the OWF chain in a reverse order periodically. However, the finite nodes in OWF chains limited its practicality. We enhance our first PoA construction by linking multiple OWF chains together using a pseudo-random generator chain in our second PoA scheme. This enhancement allows us to integrate one-time signature (OTS) schemes into the structure of the second construction to realize the auto-replenishment of the aliveness proofs for continuous use without interruption for reinitialization. In this work, our primary motivation is to further improve our secondary PoA and auto-replenishment schemes. Instead of storing the tail nodes of multiple OWF chains on the verifier side, we use a Bloom Filter to compress them, reducing the storage cost by <inline-formula><tex-math notation=\"LaTeX\">$ 4.7$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>7</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"yang-ieq1-3335188.gif\"/></alternatives></inline-formula> times. Moreover, the OTS-based auto-replenishment solution cannot be applied to our first scheme, and it is not so efficient despite its standard model security. To overcome these limitations, we design a new auto-replenishment scheme from a hash-based commitment under the random oracle model in this work, which is much faster and can be used by both PoA schemes. Considering the implementation on a storage/memory-constrained device, we particularly study the strategies for efficiently generating proofs.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Proof of Aliveness in Cyber-Physical Systems\",\"authors\":\"Zheng Yang, Chenglu Jin, Xuelian Cao, Marten van Dijk, Jianying Zhou\",\"doi\":\"10.1109/TDSC.2023.3335188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At ACSAC 2019, we introduced a new cryptographic primitive called proof of aliveness (PoA), allowing us to remotely and automatically track the running status (aliveness) of devices in the fields in cyber-physical systems. We proposed to use a one-way function (OWF) chain structure to build an efficient proof of aliveness, such that the prover sends every node on the OWF chain in a reverse order periodically. However, the finite nodes in OWF chains limited its practicality. We enhance our first PoA construction by linking multiple OWF chains together using a pseudo-random generator chain in our second PoA scheme. This enhancement allows us to integrate one-time signature (OTS) schemes into the structure of the second construction to realize the auto-replenishment of the aliveness proofs for continuous use without interruption for reinitialization. In this work, our primary motivation is to further improve our secondary PoA and auto-replenishment schemes. Instead of storing the tail nodes of multiple OWF chains on the verifier side, we use a Bloom Filter to compress them, reducing the storage cost by <inline-formula><tex-math notation=\\\"LaTeX\\\">$ 4.7$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>7</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"yang-ieq1-3335188.gif\\\"/></alternatives></inline-formula> times. Moreover, the OTS-based auto-replenishment solution cannot be applied to our first scheme, and it is not so efficient despite its standard model security. To overcome these limitations, we design a new auto-replenishment scheme from a hash-based commitment under the random oracle model in this work, which is much faster and can be used by both PoA schemes. Considering the implementation on a storage/memory-constrained device, we particularly study the strategies for efficiently generating proofs.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2023.3335188\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2023.3335188","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在 ACSAC 2019 上,我们介绍了一种名为 "有效性证明"(PoA)的新加密基元,它允许我们远程自动跟踪网络物理系统中现场设备的运行状态(有效性)。我们建议使用单向函数(OWF)链结构来构建高效的有效性证明,即证明者定期以相反顺序发送 OWF 链上的每个节点。然而,OWF 链中的有限节点限制了它的实用性。我们在第二个 PoA 方案中使用伪随机发生器链将多个 OWF 链连接在一起,从而增强了第一个 PoA 结构。这一改进使我们能够将一次性签名(OTS)方案集成到第二个构造的结构中,从而实现有效性证明的自动补充,以便连续使用而无需中断重新初始化。在这项工作中,我们的主要动机是进一步改进我们的二次 PoA 和自动补充方案。我们使用 Bloom 过滤器来压缩多个 OWF 链的尾节点,而不是将其存储在验证器端,从而将存储成本降低了 4.7 美元。此外,基于 OTS 的自动补充解决方案无法应用于我们的第一个方案,尽管它具有标准模型安全性,但效率并不高。为了克服这些局限性,我们在本文中设计了一种新的自动补充方案,它是在随机甲骨文模型下基于哈希承诺的,速度更快,而且两种 PoA 方案都可以使用。考虑到在存储/内存受限的设备上实施,我们特别研究了高效生成证明的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Proof of Aliveness in Cyber-Physical Systems
At ACSAC 2019, we introduced a new cryptographic primitive called proof of aliveness (PoA), allowing us to remotely and automatically track the running status (aliveness) of devices in the fields in cyber-physical systems. We proposed to use a one-way function (OWF) chain structure to build an efficient proof of aliveness, such that the prover sends every node on the OWF chain in a reverse order periodically. However, the finite nodes in OWF chains limited its practicality. We enhance our first PoA construction by linking multiple OWF chains together using a pseudo-random generator chain in our second PoA scheme. This enhancement allows us to integrate one-time signature (OTS) schemes into the structure of the second construction to realize the auto-replenishment of the aliveness proofs for continuous use without interruption for reinitialization. In this work, our primary motivation is to further improve our secondary PoA and auto-replenishment schemes. Instead of storing the tail nodes of multiple OWF chains on the verifier side, we use a Bloom Filter to compress them, reducing the storage cost by $ 4.7$4.7 times. Moreover, the OTS-based auto-replenishment solution cannot be applied to our first scheme, and it is not so efficient despite its standard model security. To overcome these limitations, we design a new auto-replenishment scheme from a hash-based commitment under the random oracle model in this work, which is much faster and can be used by both PoA schemes. Considering the implementation on a storage/memory-constrained device, we particularly study the strategies for efficiently generating proofs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
期刊最新文献
DSChain: A Blockchain System for Complete Lifecycle Security of Data in Internet of Things Privacy-Preserving and Energy-Saving Random Forest-Based Disease Detection Framework for Green Internet of Things in Mobile Healthcare Networks IvyRedaction: Enabling Atomic, Consistent and Accountable Cross-Chain Rewriting Multi-Adjustable Join Schemes With Adaptive Indistinguishably Security User Authentication on Earable Devices via Bone-Conducted Occlusion Sounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1