用于冲击应用的蜂巢-蜘蛛网启发自相似混合蜂窝结构

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2025-01-01 DOI:10.1016/j.dt.2024.06.015
K. Tewari, M.K. Pandit, M.M. Mahapatra, P.R. Budarapu
{"title":"用于冲击应用的蜂巢-蜘蛛网启发自相似混合蜂窝结构","authors":"K. Tewari,&nbsp;M.K. Pandit,&nbsp;M.M. Mahapatra,&nbsp;P.R. Budarapu","doi":"10.1016/j.dt.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by nature's self-similar designs, novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications. The energy absorption is enhanced by optimizing the geometry and topology for a given mass. The proposed hybrid cellular structure is arrived after a thorough analysis of topologically enhanced self-similar structures. The optimized cell designs are rigorously tested considering dynamic loads involving crush and high-velocity bullet impact. Furthermore, the influence of thickness, radial connectivity, and order of patterning at the unit cell level are also investigated. The maximum crushing efficiency attained is found to be more than 95%, which is significantly higher than most existing traditional designs. Later on, the first and second-order hierarchical self-similar unit cell designs developed during crush analysis are used to prepare the cores for sandwich structures. Impact tests are performed on the developed sandwich structures using the standard 9-mm parabellum. The influence of multistaging on impact resistance is also investigated by maintaining a constant total thickness and mass of the sandwich structure. Moreover, in order to avoid layer-wise weak zones and hence, attain a uniform out-of-plane impact strength, off-setting the designs in each stage is proposed. The sandwich structures with first and second-order self-similar hybrid cores are observed to withstand impact velocities as high as 170 m/s and 270 m/s, respectively.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"43 ","pages":"Pages 182-200"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Honeycomb-spiderweb-inspired self-similar hybrid cellular structures for impact applications\",\"authors\":\"K. Tewari,&nbsp;M.K. Pandit,&nbsp;M.M. Mahapatra,&nbsp;P.R. Budarapu\",\"doi\":\"10.1016/j.dt.2024.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inspired by nature's self-similar designs, novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications. The energy absorption is enhanced by optimizing the geometry and topology for a given mass. The proposed hybrid cellular structure is arrived after a thorough analysis of topologically enhanced self-similar structures. The optimized cell designs are rigorously tested considering dynamic loads involving crush and high-velocity bullet impact. Furthermore, the influence of thickness, radial connectivity, and order of patterning at the unit cell level are also investigated. The maximum crushing efficiency attained is found to be more than 95%, which is significantly higher than most existing traditional designs. Later on, the first and second-order hierarchical self-similar unit cell designs developed during crush analysis are used to prepare the cores for sandwich structures. Impact tests are performed on the developed sandwich structures using the standard 9-mm parabellum. The influence of multistaging on impact resistance is also investigated by maintaining a constant total thickness and mass of the sandwich structure. Moreover, in order to avoid layer-wise weak zones and hence, attain a uniform out-of-plane impact strength, off-setting the designs in each stage is proposed. The sandwich structures with first and second-order self-similar hybrid cores are observed to withstand impact velocities as high as 170 m/s and 270 m/s, respectively.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"43 \",\"pages\":\"Pages 182-200\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724001570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Honeycomb-spiderweb-inspired self-similar hybrid cellular structures for impact applications
Inspired by nature's self-similar designs, novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications. The energy absorption is enhanced by optimizing the geometry and topology for a given mass. The proposed hybrid cellular structure is arrived after a thorough analysis of topologically enhanced self-similar structures. The optimized cell designs are rigorously tested considering dynamic loads involving crush and high-velocity bullet impact. Furthermore, the influence of thickness, radial connectivity, and order of patterning at the unit cell level are also investigated. The maximum crushing efficiency attained is found to be more than 95%, which is significantly higher than most existing traditional designs. Later on, the first and second-order hierarchical self-similar unit cell designs developed during crush analysis are used to prepare the cores for sandwich structures. Impact tests are performed on the developed sandwich structures using the standard 9-mm parabellum. The influence of multistaging on impact resistance is also investigated by maintaining a constant total thickness and mass of the sandwich structure. Moreover, in order to avoid layer-wise weak zones and hence, attain a uniform out-of-plane impact strength, off-setting the designs in each stage is proposed. The sandwich structures with first and second-order self-similar hybrid cores are observed to withstand impact velocities as high as 170 m/s and 270 m/s, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board Perspectives on additive manufacturing for warhead applications Innovative dispersion techniques of graphene nanoplatelets (GNPs) through mechanical stirring and ultrasonication: Impact on morphological, mechanical, and thermal properties of epoxy nanocomposites Discovering causal models for structural, construction and defense-related engineering phenomena Synergistic effect of nitrocellulose coating on structural and reactivity stabilization of ammonium nitrate oxidizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1