对 GPT-4V 胸部 X 光图像分析多模态功能的系统评估

Yunyi Liu , Yingshu Li , Zhanyu Wang , Xinyu Liang , Lingqiao Liu , Lei Wang , Leyang Cui , Zhaopeng Tu , Longyue Wang , Luping Zhou
{"title":"对 GPT-4V 胸部 X 光图像分析多模态功能的系统评估","authors":"Yunyi Liu ,&nbsp;Yingshu Li ,&nbsp;Zhanyu Wang ,&nbsp;Xinyu Liang ,&nbsp;Lingqiao Liu ,&nbsp;Lei Wang ,&nbsp;Leyang Cui ,&nbsp;Zhaopeng Tu ,&nbsp;Longyue Wang ,&nbsp;Luping Zhou","doi":"10.1016/j.metrad.2024.100099","DOIUrl":null,"url":null,"abstract":"<div><div>This work evaluates GPT-4V's multimodal capability for medical image analysis, focusing on three representative tasks radiology report generation, medical visual question answering, and medical visual grounding. For the evaluation, a set of prompts is designed for each task to induce the corresponding capability of GPT-4V to produce sufficiently good outputs. Three evaluation ways including quantitative analysis, human evaluation, and case study are employed to achieve an in-depth and extensive evaluation. Our evaluation shows that GPT-4V excels in understanding medical images can generate high-quality radiology reports and effectively answer questions about medical images. Meanwhile, it is found that its performance for medical visual grounding needs to be substantially improved. In addition, we observe the discrepancy between the evaluation outcome from quantitative analysis and that from human evaluation. This discrepancy suggests the limitations of conventional metrics in assessing the performance of large language models like GPT-4V and the necessity of developing new metrics for automatic quantitative analysis.</div></div>","PeriodicalId":100921,"journal":{"name":"Meta-Radiology","volume":"2 4","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic evaluation of GPT-4V's multimodal capability for chest X-ray image analysis\",\"authors\":\"Yunyi Liu ,&nbsp;Yingshu Li ,&nbsp;Zhanyu Wang ,&nbsp;Xinyu Liang ,&nbsp;Lingqiao Liu ,&nbsp;Lei Wang ,&nbsp;Leyang Cui ,&nbsp;Zhaopeng Tu ,&nbsp;Longyue Wang ,&nbsp;Luping Zhou\",\"doi\":\"10.1016/j.metrad.2024.100099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work evaluates GPT-4V's multimodal capability for medical image analysis, focusing on three representative tasks radiology report generation, medical visual question answering, and medical visual grounding. For the evaluation, a set of prompts is designed for each task to induce the corresponding capability of GPT-4V to produce sufficiently good outputs. Three evaluation ways including quantitative analysis, human evaluation, and case study are employed to achieve an in-depth and extensive evaluation. Our evaluation shows that GPT-4V excels in understanding medical images can generate high-quality radiology reports and effectively answer questions about medical images. Meanwhile, it is found that its performance for medical visual grounding needs to be substantially improved. In addition, we observe the discrepancy between the evaluation outcome from quantitative analysis and that from human evaluation. This discrepancy suggests the limitations of conventional metrics in assessing the performance of large language models like GPT-4V and the necessity of developing new metrics for automatic quantitative analysis.</div></div>\",\"PeriodicalId\":100921,\"journal\":{\"name\":\"Meta-Radiology\",\"volume\":\"2 4\",\"pages\":\"Article 100099\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta-Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950162824000535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta-Radiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950162824000535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作评估了GPT-4V在医学图像分析方面的多模态能力,重点关注三个代表性任务:放射学报告生成、医学视觉问题回答和医学视觉基础。为了进行评估,为每个任务设计了一组提示符,以诱导GPT-4V产生足够好的输出的相应能力。采用定量分析、人文评价和案例研究三种评价方式,实现了深入而广泛的评价。我们的评估表明,GPT-4V在理解医学图像方面表现出色,可以生成高质量的放射学报告,并有效地回答有关医学图像的问题。同时发现其在医用视觉接地方面的性能还有待大幅度提高。此外,我们观察到定量分析的评价结果与人工评价的结果存在差异。这种差异表明了传统指标在评估像GPT-4V这样的大型语言模型的性能时的局限性,以及开发用于自动定量分析的新指标的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic evaluation of GPT-4V's multimodal capability for chest X-ray image analysis
This work evaluates GPT-4V's multimodal capability for medical image analysis, focusing on three representative tasks radiology report generation, medical visual question answering, and medical visual grounding. For the evaluation, a set of prompts is designed for each task to induce the corresponding capability of GPT-4V to produce sufficiently good outputs. Three evaluation ways including quantitative analysis, human evaluation, and case study are employed to achieve an in-depth and extensive evaluation. Our evaluation shows that GPT-4V excels in understanding medical images can generate high-quality radiology reports and effectively answer questions about medical images. Meanwhile, it is found that its performance for medical visual grounding needs to be substantially improved. In addition, we observe the discrepancy between the evaluation outcome from quantitative analysis and that from human evaluation. This discrepancy suggests the limitations of conventional metrics in assessing the performance of large language models like GPT-4V and the necessity of developing new metrics for automatic quantitative analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in the application of deep learning for coronary artery calcification Rethinking the studies of diagnostic biomarkers for mental disorders One scan, multiple insights: A review of AI-Driven biomarker imaging and composite measure detection in lung cancer screening A systematic evaluation of GPT-4V's multimodal capability for chest X-ray image analysis Integrating AI in college education: Positive yet mixed experiences with ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1