改进风力涡轮机应用性能预测的工程方法:与完整纳维-斯托克斯模型和实验测量结果的比较

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-07-01 DOI:10.47176/jafm.17.7.2404
M. N. Hamlaoui, A. Bouhelal, A. Smaili, H. Fellouah
{"title":"改进风力涡轮机应用性能预测的工程方法:与完整纳维-斯托克斯模型和实验测量结果的比较","authors":"M. N. Hamlaoui, A. Bouhelal, A. Smaili, H. Fellouah","doi":"10.47176/jafm.17.7.2404","DOIUrl":null,"url":null,"abstract":"Accurate predictions of aerodynamic performance and near wake expansion around Horizontal Axis Wind Turbine (HAWT) rotors is pivotal for studying wind turbine wake interactions and optimizing wind farm layouts. This study introduces a novel engineering model centered on stall delay correction to enhance the precision of the Actuator Disk Method (ADM) predictions in both aerodynamic performance and near wake expansion around HAWT rotors. The model is developed based on a comprehensive study of the 3D lift coefficient evolution over the rotor blade, incorporating a shift parameter that considers both stall angle detection and radial decrement. The proposed approach demonstrates remarkable agreements, showcasing discrepancies as low as 7% for both loads and axial wake predictions. These quantifiable results underscore the effectiveness of the model in capturing intricate aerodynamic phenomena. Looking forward, the success of this approach opens avenues for broader applications, guiding future research in wind energy towards improved simulation accuracy and optimized wind farm designs","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Engineering Approach to Improve Performance Predictions for Wind Turbine Applications: Comparison with Full Navier-Stokes Model and Experimental Measurements\",\"authors\":\"M. N. Hamlaoui, A. Bouhelal, A. Smaili, H. Fellouah\",\"doi\":\"10.47176/jafm.17.7.2404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate predictions of aerodynamic performance and near wake expansion around Horizontal Axis Wind Turbine (HAWT) rotors is pivotal for studying wind turbine wake interactions and optimizing wind farm layouts. This study introduces a novel engineering model centered on stall delay correction to enhance the precision of the Actuator Disk Method (ADM) predictions in both aerodynamic performance and near wake expansion around HAWT rotors. The model is developed based on a comprehensive study of the 3D lift coefficient evolution over the rotor blade, incorporating a shift parameter that considers both stall angle detection and radial decrement. The proposed approach demonstrates remarkable agreements, showcasing discrepancies as low as 7% for both loads and axial wake predictions. These quantifiable results underscore the effectiveness of the model in capturing intricate aerodynamic phenomena. Looking forward, the success of this approach opens avenues for broader applications, guiding future research in wind energy towards improved simulation accuracy and optimized wind farm designs\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.7.2404\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.7.2404","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

准确预测水平轴风力涡轮机(HAWT)转子周围的气动性能和近尾流扩展对研究风力涡轮机尾流相互作用和优化风电场布局至关重要。本研究介绍了一种以失速延迟修正为中心的新型工程模型,以提高推杆盘法(ADM)对 HAWT 转子周围气动性能和近尾流扩展的预测精度。该模型是在对转子叶片上的三维升力系数演变进行全面研究的基础上开发的,其中包含了一个同时考虑失速角检测和径向递减的偏移参数。所提出的方法显示出显著的一致性,在载荷和轴向尾流预测方面的差异低至 7%。这些可量化的结果凸显了模型在捕捉复杂空气动力现象方面的有效性。展望未来,这种方法的成功为更广泛的应用开辟了道路,并将指导未来的风能研究,以提高模拟精度和优化风电场设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Engineering Approach to Improve Performance Predictions for Wind Turbine Applications: Comparison with Full Navier-Stokes Model and Experimental Measurements
Accurate predictions of aerodynamic performance and near wake expansion around Horizontal Axis Wind Turbine (HAWT) rotors is pivotal for studying wind turbine wake interactions and optimizing wind farm layouts. This study introduces a novel engineering model centered on stall delay correction to enhance the precision of the Actuator Disk Method (ADM) predictions in both aerodynamic performance and near wake expansion around HAWT rotors. The model is developed based on a comprehensive study of the 3D lift coefficient evolution over the rotor blade, incorporating a shift parameter that considers both stall angle detection and radial decrement. The proposed approach demonstrates remarkable agreements, showcasing discrepancies as low as 7% for both loads and axial wake predictions. These quantifiable results underscore the effectiveness of the model in capturing intricate aerodynamic phenomena. Looking forward, the success of this approach opens avenues for broader applications, guiding future research in wind energy towards improved simulation accuracy and optimized wind farm designs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Experimental and LES Studies of Propane–air Premixed Gases in Pipelines Containing Mixed Obstacles Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator Numerical Study on the Influence of Plasma Actuation on the Cavitation Characteristics of Hydrofoil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1